MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txswaphmeolem Structured version   Visualization version   GIF version

Theorem txswaphmeolem 21655
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeolem ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦

Proof of Theorem txswaphmeolem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opelxpi 5182 . . . . . 6 ((𝑦𝑌𝑥𝑋) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
21ancoms 468 . . . . 5 ((𝑥𝑋𝑦𝑌) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
32adantl 481 . . . 4 ((⊤ ∧ (𝑥𝑋𝑦𝑌)) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
4 eqidd 2652 . . . 4 (⊤ → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩))
5 sneq 4220 . . . . . . . . . 10 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩})
65cnveqd 5330 . . . . . . . . 9 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩})
76unieqd 4478 . . . . . . . 8 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩})
8 opswap 5660 . . . . . . . 8 {⟨𝑦, 𝑥⟩} = ⟨𝑥, 𝑦
97, 8syl6eq 2701 . . . . . . 7 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = ⟨𝑥, 𝑦⟩)
109mpt2mpt 6794 . . . . . 6 (𝑧 ∈ (𝑌 × 𝑋) ↦ {𝑧}) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)
1110eqcomi 2660 . . . . 5 (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ {𝑧})
1211a1i 11 . . . 4 (⊤ → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ {𝑧}))
133, 4, 12, 9fmpt2co 7305 . . 3 (⊤ → ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑥, 𝑦⟩))
1413trud 1533 . 2 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑥, 𝑦⟩)
15 id 22 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑥, 𝑦⟩)
1615mpt2mpt 6794 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑥, 𝑦⟩)
17 mptresid 5491 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = ( I ↾ (𝑋 × 𝑌))
1814, 16, 173eqtr2i 2679 1 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wtru 1524  wcel 2030  {csn 4210  cop 4216   cuni 4468  cmpt 4762   I cid 5052   × cxp 5141  ccnv 5142  cres 5145  ccom 5147  cmpt2 6692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211
This theorem is referenced by:  txswaphmeo  21656
  Copyright terms: Public domain W3C validator