Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcn Structured version   Visualization version   GIF version

Theorem txcn 21477
 Description: A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcn.1 𝑋 = 𝑅
txcn.2 𝑌 = 𝑆
txcn.3 𝑍 = (𝑋 × 𝑌)
txcn.4 𝑊 = 𝑈
txcn.5 𝑃 = (1st𝑍)
txcn.6 𝑄 = (2nd𝑍)
Assertion
Ref Expression
txcn ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))

Proof of Theorem txcn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 txcn.1 . . . . 5 𝑋 = 𝑅
21toptopon 20770 . . . 4 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
3 txcn.2 . . . . 5 𝑌 = 𝑆
43toptopon 20770 . . . 4 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
5 txcn.5 . . . . . . 7 𝑃 = (1st𝑍)
6 txcn.3 . . . . . . . 8 𝑍 = (𝑋 × 𝑌)
76reseq2i 5425 . . . . . . 7 (1st𝑍) = (1st ↾ (𝑋 × 𝑌))
85, 7eqtri 2673 . . . . . 6 𝑃 = (1st ↾ (𝑋 × 𝑌))
9 tx1cn 21460 . . . . . 6 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
108, 9syl5eqel 2734 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
11 txcn.6 . . . . . . 7 𝑄 = (2nd𝑍)
126reseq2i 5425 . . . . . . 7 (2nd𝑍) = (2nd ↾ (𝑋 × 𝑌))
1311, 12eqtri 2673 . . . . . 6 𝑄 = (2nd ↾ (𝑋 × 𝑌))
14 tx2cn 21461 . . . . . 6 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
1513, 14syl5eqel 2734 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
16 cnco 21118 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ 𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → (𝑃𝐹) ∈ (𝑈 Cn 𝑅))
17 cnco 21118 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → (𝑄𝐹) ∈ (𝑈 Cn 𝑆))
1816, 17anim12dan 900 . . . . . 6 ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ (𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆))) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆)))
1918expcom 450 . . . . 5 ((𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
2010, 15, 19syl2anc 694 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
212, 4, 20syl2anb 495 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
22213adant3 1101 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
23 cntop1 21092 . . . . . . . 8 ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top)
2423ad2antrl 764 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑈 ∈ Top)
25 txcn.4 . . . . . . . 8 𝑊 = 𝑈
2625topopn 20759 . . . . . . 7 (𝑈 ∈ Top → 𝑊𝑈)
2724, 26syl 17 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑊𝑈)
2825, 1cnf 21098 . . . . . . 7 ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) → (𝑃𝐹):𝑊𝑋)
2928ad2antrl 764 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (𝑃𝐹):𝑊𝑋)
3025, 3cnf 21098 . . . . . . 7 ((𝑄𝐹) ∈ (𝑈 Cn 𝑆) → (𝑄𝐹):𝑊𝑌)
3130ad2antll 765 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (𝑄𝐹):𝑊𝑌)
328, 13upxp 21474 . . . . . . 7 ((𝑊𝑈 ∧ (𝑃𝐹):𝑊𝑋 ∧ (𝑄𝐹):𝑊𝑌) → ∃!(:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
33 feq3 6066 . . . . . . . . . 10 (𝑍 = (𝑋 × 𝑌) → (:𝑊𝑍:𝑊⟶(𝑋 × 𝑌)))
346, 33ax-mp 5 . . . . . . . . 9 (:𝑊𝑍:𝑊⟶(𝑋 × 𝑌))
35343anbi1i 1272 . . . . . . . 8 ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ (:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
3635eubii 2520 . . . . . . 7 (∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ ∃!(:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
3732, 36sylibr 224 . . . . . 6 ((𝑊𝑈 ∧ (𝑃𝐹):𝑊𝑋 ∧ (𝑄𝐹):𝑊𝑌) → ∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
3827, 29, 31, 37syl3anc 1366 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
39 euex 2522 . . . . 5 (∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∃(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
4038, 39syl 17 . . . 4 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
41 simpll3 1122 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → 𝐹:𝑊𝑍)
4227adantr 480 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → 𝑊𝑈)
431topopn 20759 . . . . . . . . . 10 (𝑅 ∈ Top → 𝑋𝑅)
443topopn 20759 . . . . . . . . . 10 (𝑆 ∈ Top → 𝑌𝑆)
45 xpexg 7002 . . . . . . . . . . 11 ((𝑋𝑅𝑌𝑆) → (𝑋 × 𝑌) ∈ V)
466, 45syl5eqel 2734 . . . . . . . . . 10 ((𝑋𝑅𝑌𝑆) → 𝑍 ∈ V)
4743, 44, 46syl2an 493 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑍 ∈ V)
48473adant3 1101 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → 𝑍 ∈ V)
4948ad2antrr 762 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → 𝑍 ∈ V)
50 fex2 7163 . . . . . . 7 ((𝐹:𝑊𝑍𝑊𝑈𝑍 ∈ V) → 𝐹 ∈ V)
5141, 42, 49, 50syl3anc 1366 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → 𝐹 ∈ V)
52 eumo 2527 . . . . . . . 8 (∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∃*(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
5338, 52syl 17 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃*(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
5453adantr 480 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∃*(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
55 simpr 476 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
56 3anass 1059 . . . . . . . 8 ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ (:𝑊𝑍 ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
57 coeq2 5313 . . . . . . . . . . . 12 (𝐹 = → (𝑃𝐹) = (𝑃))
58 coeq2 5313 . . . . . . . . . . . 12 (𝐹 = → (𝑄𝐹) = (𝑄))
5957, 58jca 553 . . . . . . . . . . 11 (𝐹 = → ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
6059eqcoms 2659 . . . . . . . . . 10 ( = 𝐹 → ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
6160biantrud 527 . . . . . . . . 9 ( = 𝐹 → (:𝑊𝑍 ↔ (:𝑊𝑍 ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))))
62 feq1 6064 . . . . . . . . 9 ( = 𝐹 → (:𝑊𝑍𝐹:𝑊𝑍))
6361, 62bitr3d 270 . . . . . . . 8 ( = 𝐹 → ((:𝑊𝑍 ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) ↔ 𝐹:𝑊𝑍))
6456, 63syl5bb 272 . . . . . . 7 ( = 𝐹 → ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ 𝐹:𝑊𝑍))
6564moi2 3420 . . . . . 6 (((𝐹 ∈ V ∧ ∃*(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) ∧ ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ 𝐹:𝑊𝑍)) → = 𝐹)
6651, 54, 55, 41, 65syl22anc 1367 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → = 𝐹)
67 eqid 2651 . . . . . . . . . 10 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
6867, 1, 3, 6, 5, 11uptx 21476 . . . . . . . . 9 (((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
6968adantl 481 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
70 df-reu 2948 . . . . . . . . . 10 (∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ ∃!( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
71 euex 2522 . . . . . . . . . 10 (∃!( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∃( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
7270, 71sylbi 207 . . . . . . . . 9 (∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∃( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
73 eqid 2651 . . . . . . . . . . . . . . 15 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
7425, 73cnf 21098 . . . . . . . . . . . . . 14 ( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → :𝑊 (𝑅 ×t 𝑆))
751, 3txuni 21443 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
766, 75syl5eq 2697 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑍 = (𝑅 ×t 𝑆))
77763adant3 1101 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → 𝑍 = (𝑅 ×t 𝑆))
7877adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑍 = (𝑅 ×t 𝑆))
7978feq3d 6070 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (:𝑊𝑍:𝑊 (𝑅 ×t 𝑆)))
8074, 79syl5ibr 236 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → :𝑊𝑍))
8180anim1d 587 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → (:𝑊𝑍 ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))))
8281, 56syl6ibr 242 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
83 simpl 472 . . . . . . . . . . . 12 (( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
8483a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∈ (𝑈 Cn (𝑅 ×t 𝑆))))
8582, 84jcad 554 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))))
8685eximdv 1886 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (∃( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∃((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))))
8772, 86syl5 34 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∃((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))))
8869, 87mpd 15 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆))))
89 eupick 2565 . . . . . . 7 ((∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∃((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) → ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∈ (𝑈 Cn (𝑅 ×t 𝑆))))
9038, 88, 89syl2anc 694 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∈ (𝑈 Cn (𝑅 ×t 𝑆))))
9190imp 444 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
9266, 91eqeltrrd 2731 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
9340, 92exlimddv 1903 . . 3 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
9493ex 449 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → (((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆)) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆))))
9522, 94impbid 202 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030  ∃!weu 2498  ∃*wmo 2499  ∃!wreu 2943  Vcvv 3231  ∪ cuni 4468   × cxp 5141   ↾ cres 5145   ∘ ccom 5147  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  Topctop 20746  TopOnctopon 20763   Cn ccn 21076   ×t ctx 21411 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cn 21079  df-tx 21413 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator