Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmp Structured version   Visualization version   GIF version

Theorem txcmp 21644
 Description: The topological product of two compact spaces is compact. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened 21-Mar-2015.)
Assertion
Ref Expression
txcmp ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)

Proof of Theorem txcmp
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmptop 21396 . . 3 (𝑅 ∈ Comp → 𝑅 ∈ Top)
2 cmptop 21396 . . 3 (𝑆 ∈ Comp → 𝑆 ∈ Top)
3 txtop 21570 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 495 . 2 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Top)
5 eqid 2756 . . . . . 6 𝑅 = 𝑅
6 eqid 2756 . . . . . 6 𝑆 = 𝑆
7 simpll 807 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → 𝑅 ∈ Comp)
8 simplr 809 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → 𝑆 ∈ Comp)
9 elpwi 4308 . . . . . . 7 (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) → 𝑤 ⊆ (𝑅 ×t 𝑆))
109ad2antrl 766 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → 𝑤 ⊆ (𝑅 ×t 𝑆))
115, 6txuni 21593 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
121, 2, 11syl2an 495 . . . . . . . 8 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
1312adantr 472 . . . . . . 7 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
14 simprr 813 . . . . . . 7 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → (𝑅 ×t 𝑆) = 𝑤)
1513, 14eqtrd 2790 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → ( 𝑅 × 𝑆) = 𝑤)
165, 6, 7, 8, 10, 15txcmplem2 21643 . . . . 5 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin)( 𝑅 × 𝑆) = 𝑣)
1713eqeq1d 2758 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → (( 𝑅 × 𝑆) = 𝑣 (𝑅 ×t 𝑆) = 𝑣))
1817rexbidv 3186 . . . . 5 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → (∃𝑣 ∈ (𝒫 𝑤 ∩ Fin)( 𝑅 × 𝑆) = 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣))
1916, 18mpbid 222 . . . 4 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣)
2019expr 644 . . 3 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ 𝑤 ∈ 𝒫 (𝑅 ×t 𝑆)) → ( (𝑅 ×t 𝑆) = 𝑤 → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣))
2120ralrimiva 3100 . 2 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → ∀𝑤 ∈ 𝒫 (𝑅 ×t 𝑆)( (𝑅 ×t 𝑆) = 𝑤 → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣))
22 eqid 2756 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
2322iscmp 21389 . 2 ((𝑅 ×t 𝑆) ∈ Comp ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑤 ∈ 𝒫 (𝑅 ×t 𝑆)( (𝑅 ×t 𝑆) = 𝑤 → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣)))
244, 21, 23sylanbrc 701 1 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1628   ∈ wcel 2135  ∀wral 3046  ∃wrex 3047   ∩ cin 3710   ⊆ wss 3711  𝒫 cpw 4298  ∪ cuni 4584   × cxp 5260  (class class class)co 6809  Fincfn 8117  Topctop 20896  Compccmp 21387   ×t ctx 21561 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-fin 8121  df-topgen 16302  df-top 20897  df-topon 20914  df-bases 20948  df-cmp 21388  df-tx 21563 This theorem is referenced by:  txcmpb  21645  txkgen  21653  ptcmpfi  21814  xkohmeo  21816  cnheiborlem  22950
 Copyright terms: Public domain W3C validator