MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2ndc Structured version   Visualization version   GIF version

Theorem tx2ndc 21648
Description: The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
tx2ndc ((𝑅 ∈ 2nd𝜔 ∧ 𝑆 ∈ 2nd𝜔) → (𝑅 ×t 𝑆) ∈ 2nd𝜔)

Proof of Theorem tx2ndc
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 21443 . 2 (𝑅 ∈ 2nd𝜔 ↔ ∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅))
2 is2ndc 21443 . 2 (𝑆 ∈ 2nd𝜔 ↔ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆))
3 reeanv 3237 . . 3 (∃𝑟 ∈ TopBases ∃𝑠 ∈ TopBases ((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ (∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)))
4 an4 900 . . . . 5 (((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) ↔ ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) ∧ ((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆)))
5 txbasval 21603 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (𝑟 ×t 𝑠))
6 eqid 2752 . . . . . . . . . . 11 ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))
76txval 21561 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (𝑟 ×t 𝑠) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
85, 7eqtrd 2786 . . . . . . . . 9 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
98adantr 472 . . . . . . . 8 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
106txbas 21564 . . . . . . . . . 10 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases)
1110adantr 472 . . . . . . . . 9 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases)
12 omelon 8708 . . . . . . . . . . . 12 ω ∈ On
13 vex 3335 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
1413xpdom1 8216 . . . . . . . . . . . . . . 15 (𝑟 ≼ ω → (𝑟 × 𝑠) ≼ (ω × 𝑠))
15 omex 8705 . . . . . . . . . . . . . . . 16 ω ∈ V
1615xpdom2 8212 . . . . . . . . . . . . . . 15 (𝑠 ≼ ω → (ω × 𝑠) ≼ (ω × ω))
17 domtr 8166 . . . . . . . . . . . . . . 15 (((𝑟 × 𝑠) ≼ (ω × 𝑠) ∧ (ω × 𝑠) ≼ (ω × ω)) → (𝑟 × 𝑠) ≼ (ω × ω))
1814, 16, 17syl2an 495 . . . . . . . . . . . . . 14 ((𝑟 ≼ ω ∧ 𝑠 ≼ ω) → (𝑟 × 𝑠) ≼ (ω × ω))
1918adantl 473 . . . . . . . . . . . . 13 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ (ω × ω))
20 xpomen 9020 . . . . . . . . . . . . 13 (ω × ω) ≈ ω
21 domentr 8172 . . . . . . . . . . . . 13 (((𝑟 × 𝑠) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝑟 × 𝑠) ≼ ω)
2219, 20, 21sylancl 697 . . . . . . . . . . . 12 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ≼ ω)
23 ondomen 9042 . . . . . . . . . . . 12 ((ω ∈ On ∧ (𝑟 × 𝑠) ≼ ω) → (𝑟 × 𝑠) ∈ dom card)
2412, 22, 23sylancr 698 . . . . . . . . . . 11 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑟 × 𝑠) ∈ dom card)
25 eqid 2752 . . . . . . . . . . . . . 14 (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))
26 vex 3335 . . . . . . . . . . . . . . 15 𝑥 ∈ V
27 vex 3335 . . . . . . . . . . . . . . 15 𝑦 ∈ V
2826, 27xpex 7119 . . . . . . . . . . . . . 14 (𝑥 × 𝑦) ∈ V
2925, 28fnmpt2i 7399 . . . . . . . . . . . . 13 (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠)
3029a1i 11 . . . . . . . . . . . 12 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠))
31 dffn4 6274 . . . . . . . . . . . 12 ((𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) Fn (𝑟 × 𝑠) ↔ (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)))
3230, 31sylib 208 . . . . . . . . . . 11 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)))
33 fodomnum 9062 . . . . . . . . . . 11 ((𝑟 × 𝑠) ∈ dom card → ((𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)):(𝑟 × 𝑠)–onto→ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠)))
3424, 32, 33sylc 65 . . . . . . . . . 10 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠))
35 domtr 8166 . . . . . . . . . 10 ((ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ≼ ω) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω)
3634, 22, 35syl2anc 696 . . . . . . . . 9 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω)
37 2ndci 21445 . . . . . . . . 9 ((ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ∈ TopBases ∧ ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) ≼ ω) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) ∈ 2nd𝜔)
3811, 36, 37syl2anc 696 . . . . . . . 8 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) ∈ 2nd𝜔)
399, 38eqeltrd 2831 . . . . . . 7 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → ((topGen‘𝑟) ×t (topGen‘𝑠)) ∈ 2nd𝜔)
40 oveq12 6814 . . . . . . . 8 (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → ((topGen‘𝑟) ×t (topGen‘𝑠)) = (𝑅 ×t 𝑆))
4140eleq1d 2816 . . . . . . 7 (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → (((topGen‘𝑟) ×t (topGen‘𝑠)) ∈ 2nd𝜔 ↔ (𝑅 ×t 𝑆) ∈ 2nd𝜔))
4239, 41syl5ibcom 235 . . . . . 6 (((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) ∧ (𝑟 ≼ ω ∧ 𝑠 ≼ ω)) → (((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆) → (𝑅 ×t 𝑆) ∈ 2nd𝜔))
4342expimpd 630 . . . . 5 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (((𝑟 ≼ ω ∧ 𝑠 ≼ ω) ∧ ((topGen‘𝑟) = 𝑅 ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2nd𝜔))
444, 43syl5bi 232 . . . 4 ((𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases) → (((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2nd𝜔))
4544rexlimivv 3166 . . 3 (∃𝑟 ∈ TopBases ∃𝑠 ∈ TopBases ((𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2nd𝜔)
463, 45sylbir 225 . 2 ((∃𝑟 ∈ TopBases (𝑟 ≼ ω ∧ (topGen‘𝑟) = 𝑅) ∧ ∃𝑠 ∈ TopBases (𝑠 ≼ ω ∧ (topGen‘𝑠) = 𝑆)) → (𝑅 ×t 𝑆) ∈ 2nd𝜔)
471, 2, 46syl2anb 497 1 ((𝑅 ∈ 2nd𝜔 ∧ 𝑆 ∈ 2nd𝜔) → (𝑅 ×t 𝑆) ∈ 2nd𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  wrex 3043   class class class wbr 4796   × cxp 5256  dom cdm 5258  ran crn 5259  Oncon0 5876   Fn wfn 6036  ontowfo 6039  cfv 6041  (class class class)co 6805  cmpt2 6807  ωcom 7222  cen 8110  cdom 8111  cardccrd 8943  topGenctg 16292  TopBasesctb 20943  2nd𝜔c2ndc 21435   ×t ctx 21557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-oi 8572  df-card 8947  df-acn 8950  df-topgen 16298  df-bases 20944  df-2ndc 21437  df-tx 21559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator