MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem6 Structured version   Visualization version   GIF version

Theorem ttukeylem6 9321
Description: Lemma for ttukey 9325. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem6 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem6
Dummy variables 𝑎 𝑦 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardon 8755 . . . . 5 (card‘( 𝐴𝐵)) ∈ On
21onsuci 7023 . . . 4 suc (card‘( 𝐴𝐵)) ∈ On
32a1i 11 . . 3 (𝜑 → suc (card‘( 𝐴𝐵)) ∈ On)
4 onelon 5736 . . 3 ((suc (card‘( 𝐴𝐵)) ∈ On ∧ 𝐶 ∈ suc (card‘( 𝐴𝐵))) → 𝐶 ∈ On)
53, 4sylan 488 . 2 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → 𝐶 ∈ On)
6 eleq1 2687 . . . . . 6 (𝑦 = 𝑎 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) ↔ 𝑎 ∈ suc (card‘( 𝐴𝐵))))
7 fveq2 6178 . . . . . . 7 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
87eleq1d 2684 . . . . . 6 (𝑦 = 𝑎 → ((𝐺𝑦) ∈ 𝐴 ↔ (𝐺𝑎) ∈ 𝐴))
96, 8imbi12d 334 . . . . 5 (𝑦 = 𝑎 → ((𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴) ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
109imbi2d 330 . . . 4 (𝑦 = 𝑎 → ((𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)) ↔ (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴))))
11 eleq1 2687 . . . . . 6 (𝑦 = 𝐶 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) ↔ 𝐶 ∈ suc (card‘( 𝐴𝐵))))
12 fveq2 6178 . . . . . . 7 (𝑦 = 𝐶 → (𝐺𝑦) = (𝐺𝐶))
1312eleq1d 2684 . . . . . 6 (𝑦 = 𝐶 → ((𝐺𝑦) ∈ 𝐴 ↔ (𝐺𝐶) ∈ 𝐴))
1411, 13imbi12d 334 . . . . 5 (𝑦 = 𝐶 → ((𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴) ↔ (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴)))
1514imbi2d 330 . . . 4 (𝑦 = 𝐶 → ((𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)) ↔ (𝜑 → (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴))))
16 r19.21v 2957 . . . . . 6 (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) ↔ (𝜑 → ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
172onordi 5820 . . . . . . . . . . . . . . 15 Ord suc (card‘( 𝐴𝐵))
1817a1i 11 . . . . . . . . . . . . . 14 (𝜑 → Ord suc (card‘( 𝐴𝐵)))
19 ordelss 5727 . . . . . . . . . . . . . 14 ((Ord suc (card‘( 𝐴𝐵)) ∧ 𝑦 ∈ suc (card‘( 𝐴𝐵))) → 𝑦 ⊆ suc (card‘( 𝐴𝐵)))
2018, 19sylan 488 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → 𝑦 ⊆ suc (card‘( 𝐴𝐵)))
2120sselda 3595 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) ∧ 𝑎𝑦) → 𝑎 ∈ suc (card‘( 𝐴𝐵)))
22 biimt 350 . . . . . . . . . . . 12 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → ((𝐺𝑎) ∈ 𝐴 ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
2321, 22syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) ∧ 𝑎𝑦) → ((𝐺𝑎) ∈ 𝐴 ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
2423ralbidva 2982 . . . . . . . . . 10 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 ↔ ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
252onssi 7022 . . . . . . . . . . . . . 14 suc (card‘( 𝐴𝐵)) ⊆ On
26 simprl 793 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → 𝑦 ∈ suc (card‘( 𝐴𝐵)))
2725, 26sseldi 3593 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → 𝑦 ∈ On)
28 ttukeylem.1 . . . . . . . . . . . . . 14 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
29 ttukeylem.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝐴)
30 ttukeylem.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
31 ttukeylem.4 . . . . . . . . . . . . . 14 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
3228, 29, 30, 31ttukeylem3 9318 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ On) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
3327, 32syldan 487 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
3429ad3antrrr 765 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑦 = ∅) → 𝐵𝐴)
35 inss2 3826 . . . . . . . . . . . . . . . . . . . . 21 (𝒫 (𝐺𝑦) ∩ Fin) ⊆ Fin
36 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin))
3735, 36sseldi 3593 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ Fin)
38 inss1 3825 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝒫 (𝐺𝑦)
3938, 36sseldi 3593 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ 𝒫 (𝐺𝑦))
4039elpwid 4161 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 (𝐺𝑦))
4131tfr1 7478 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 Fn On
42 fnfun 5976 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 Fn On → Fun 𝐺)
43 funiunfv 6491 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐺 𝑣𝑦 (𝐺𝑣) = (𝐺𝑦))
4441, 42, 43mp2b 10 . . . . . . . . . . . . . . . . . . . . . 22 𝑣𝑦 (𝐺𝑣) = (𝐺𝑦)
4540, 44syl6sseqr 3644 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 𝑣𝑦 (𝐺𝑣))
46 dfss3 3585 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤 𝑢 𝑣𝑦 (𝐺𝑣))
47 eliun 4515 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 𝑣𝑦 (𝐺𝑣) ↔ ∃𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4847ralbii 2977 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑢𝑤 𝑢 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4946, 48bitri 264 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
5045, 49sylib 208 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
51 fveq2 6178 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (𝑓𝑢) → (𝐺𝑣) = (𝐺‘(𝑓𝑢)))
5251eleq2d 2685 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑓𝑢) → (𝑢 ∈ (𝐺𝑣) ↔ 𝑢 ∈ (𝐺‘(𝑓𝑢))))
5352ac6sfi 8189 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Fin ∧ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣)) → ∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))
5437, 50, 53syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))
55 eleq1 2687 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ∈ 𝐴))
56 simp-4l 805 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝜑)
57 simprrl 803 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑓:𝑤𝑦)
5857adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓:𝑤𝑦)
59 frn 6040 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑤𝑦 → ran 𝑓𝑦)
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓𝑦)
6127ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑦 ∈ On)
62 onss 6975 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ On → 𝑦 ⊆ On)
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑦 ⊆ On)
6460, 63sstrd 3605 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ⊆ On)
6537adantrr 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑤 ∈ Fin)
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤 ∈ Fin)
67 ffn 6032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:𝑤𝑦𝑓 Fn 𝑤)
6858, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓 Fn 𝑤)
69 dffn4 6108 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 Fn 𝑤𝑓:𝑤onto→ran 𝑓)
7068, 69sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓:𝑤onto→ran 𝑓)
71 fofi 8237 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ Fin ∧ 𝑓:𝑤onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7266, 70, 71syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ∈ Fin)
73 dm0rn0 5331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
74 fdm 6038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:𝑤𝑦 → dom 𝑓 = 𝑤)
7557, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → dom 𝑓 = 𝑤)
7675eqeq1d 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (dom 𝑓 = ∅ ↔ 𝑤 = ∅))
7773, 76syl5bbr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (ran 𝑓 = ∅ ↔ 𝑤 = ∅))
7877necon3bid 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (ran 𝑓 ≠ ∅ ↔ 𝑤 ≠ ∅))
7978biimpar 502 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ≠ ∅)
80 ordunifi 8195 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran 𝑓 ⊆ On ∧ ran 𝑓 ∈ Fin ∧ ran 𝑓 ≠ ∅) → ran 𝑓 ∈ ran 𝑓)
8164, 72, 79, 80syl3anc 1324 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ∈ ran 𝑓)
8260, 81sseldd 3596 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓𝑦)
83 simplrr 800 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
8483ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
85 fveq2 6178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = ran 𝑓 → (𝐺𝑎) = (𝐺 ran 𝑓))
8685eleq1d 2684 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = ran 𝑓 → ((𝐺𝑎) ∈ 𝐴 ↔ (𝐺 ran 𝑓) ∈ 𝐴))
8786rspcv 3300 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ran 𝑓𝑦 → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 → (𝐺 ran 𝑓) ∈ 𝐴))
8882, 84, 87sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → (𝐺 ran 𝑓) ∈ 𝐴)
89 simp-4l 805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝜑)
9027ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑦 ∈ On)
9190, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑦 ⊆ On)
92 ffvelrn 6343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓:𝑤𝑦𝑢𝑤) → (𝑓𝑢) ∈ 𝑦)
9392adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ 𝑦)
9491, 93sseldd 3596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ On)
9559ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓𝑦)
9695, 91sstrd 3605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓 ⊆ On)
97 vex 3198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑓 ∈ V
9897rnex 7085 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ran 𝑓 ∈ V
9998ssonunii 6972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (ran 𝑓 ⊆ On → ran 𝑓 ∈ On)
10096, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓 ∈ On)
10167ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑓 Fn 𝑤)
102 simprr 795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑢𝑤)
103 fnfvelrn 6342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓 Fn 𝑤𝑢𝑤) → (𝑓𝑢) ∈ ran 𝑓)
104101, 102, 103syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ ran 𝑓)
105 elssuni 4458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓𝑢) ∈ ran 𝑓 → (𝑓𝑢) ⊆ ran 𝑓)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ⊆ ran 𝑓)
10728, 29, 30, 31ttukeylem5 9320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ ((𝑓𝑢) ∈ On ∧ ran 𝑓 ∈ On ∧ (𝑓𝑢) ⊆ ran 𝑓)) → (𝐺‘(𝑓𝑢)) ⊆ (𝐺 ran 𝑓))
10889, 94, 100, 106, 107syl13anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝐺‘(𝑓𝑢)) ⊆ (𝐺 ran 𝑓))
109108sseld 3594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑢 ∈ (𝐺‘(𝑓𝑢)) → 𝑢 ∈ (𝐺 ran 𝑓)))
110109anassrs 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ 𝑓:𝑤𝑦) ∧ 𝑢𝑤) → (𝑢 ∈ (𝐺‘(𝑓𝑢)) → 𝑢 ∈ (𝐺 ran 𝑓)))
111110ralimdva 2959 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ 𝑓:𝑤𝑦) → (∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢)) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓)))
112111expimpd 628 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ((𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓)))
113112impr 648 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
114113adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
115 dfss3 3585 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ⊆ (𝐺 ran 𝑓) ↔ ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
116114, 115sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤 ⊆ (𝐺 ran 𝑓))
11728, 29, 30ttukeylem2 9317 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝐺 ran 𝑓) ∈ 𝐴𝑤 ⊆ (𝐺 ran 𝑓))) → 𝑤𝐴)
11856, 88, 116, 117syl12anc 1322 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤𝐴)
119 0ss 3963 . . . . . . . . . . . . . . . . . . . . . . . . 25 ∅ ⊆ 𝐵
12028, 29, 30ttukeylem2 9317 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝐵𝐴 ∧ ∅ ⊆ 𝐵)) → ∅ ∈ 𝐴)
121119, 120mpanr2 719 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ∅ ∈ 𝐴)
12229, 121mpdan 701 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∅ ∈ 𝐴)
123122ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → ∅ ∈ 𝐴)
12455, 118, 123pm2.61ne 2876 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑤𝐴)
125124expr 642 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ((𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → 𝑤𝐴))
126125exlimdv 1859 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → (∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → 𝑤𝐴))
12754, 126mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤𝐴)
128127ex 450 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) → 𝑤𝐴))
129128ssrdv 3601 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴)
13028, 29, 30ttukeylem1 9316 . . . . . . . . . . . . . . . . 17 (𝜑 → ( (𝐺𝑦) ∈ 𝐴 ↔ (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴))
131130ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → ( (𝐺𝑦) ∈ 𝐴 ↔ (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴))
132129, 131mpbird 247 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝐺𝑦) ∈ 𝐴)
133132adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ ¬ 𝑦 = ∅) → (𝐺𝑦) ∈ 𝐴)
13434, 133ifclda 4111 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) ∈ 𝐴)
135 uneq2 3753 . . . . . . . . . . . . . . 15 ({(𝐹 𝑦)} = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
136135eleq1d 2684 . . . . . . . . . . . . . 14 ({(𝐹 𝑦)} = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → (((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴 ↔ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴))
137 un0 3958 . . . . . . . . . . . . . . . 16 ((𝐺 𝑦) ∪ ∅) = (𝐺 𝑦)
138 uneq2 3753 . . . . . . . . . . . . . . . 16 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∪ ∅) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
139137, 138syl5eqr 2668 . . . . . . . . . . . . . . 15 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → (𝐺 𝑦) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
140139eleq1d 2684 . . . . . . . . . . . . . 14 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∈ 𝐴 ↔ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴))
141 simpr 477 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) ∧ ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴) → ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴)
142 vuniex 6939 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
143142sucid 5792 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
144 eloni 5721 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
145 orduniorsuc 7015 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
14627, 144, 1453syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝑦 = 𝑦𝑦 = suc 𝑦))
147146orcanai 951 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → 𝑦 = suc 𝑦)
148143, 147syl5eleqr 2706 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → 𝑦𝑦)
149 simplrr 800 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
150 fveq2 6178 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → (𝐺𝑎) = (𝐺 𝑦))
151150eleq1d 2684 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → ((𝐺𝑎) ∈ 𝐴 ↔ (𝐺 𝑦) ∈ 𝐴))
152151rspcv 3300 . . . . . . . . . . . . . . . 16 ( 𝑦𝑦 → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 → (𝐺 𝑦) ∈ 𝐴))
153148, 149, 152sylc 65 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → (𝐺 𝑦) ∈ 𝐴)
154153adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) ∧ ¬ ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴) → (𝐺 𝑦) ∈ 𝐴)
155136, 140, 141, 154ifbothda 4114 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴)
156134, 155ifclda 4111 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) ∈ 𝐴)
15733, 156eqeltrd 2699 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝐺𝑦) ∈ 𝐴)
158157expr 642 . . . . . . . . . 10 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 → (𝐺𝑦) ∈ 𝐴))
15924, 158sylbird 250 . . . . . . . . 9 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
160159ex 450 . . . . . . . 8 (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴)))
161160com23 86 . . . . . . 7 (𝜑 → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
162161a2i 14 . . . . . 6 ((𝜑 → ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
16316, 162sylbi 207 . . . . 5 (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
164163a1i 11 . . . 4 (𝑦 ∈ On → (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴))))
16510, 15, 164tfis3 7042 . . 3 (𝐶 ∈ On → (𝜑 → (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴)))
166165impd 447 . 2 (𝐶 ∈ On → ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴))
1675, 166mpcom 38 1 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1479   = wceq 1481  wex 1702  wcel 1988  wne 2791  wral 2909  wrex 2910  Vcvv 3195  cdif 3564  cun 3565  cin 3566  wss 3567  c0 3907  ifcif 4077  𝒫 cpw 4149  {csn 4168   cuni 4427   ciun 4511  cmpt 4720  dom cdm 5104  ran crn 5105  cima 5107  Ord word 5710  Oncon0 5711  suc csuc 5713  Fun wfun 5870   Fn wfn 5871  wf 5872  ontowfo 5874  1-1-ontowf1o 5875  cfv 5876  recscrecs 7452  Fincfn 7940  cardccrd 8746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-om 7051  df-wrecs 7392  df-recs 7453  df-1o 7545  df-er 7727  df-en 7941  df-dom 7942  df-fin 7944  df-card 8750
This theorem is referenced by:  ttukeylem7  9322
  Copyright terms: Public domain W3C validator