MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukey2g Structured version   Visualization version   GIF version

Theorem ttukey2g 9376
Description: The Teichmüller-Tukey Lemma ttukey 9378 with a slightly stronger conclusion: we can set up the maximal element of 𝐴 so that it also contains some given 𝐵𝐴 as a subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
ttukey2g (( 𝐴 ∈ dom card ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ttukey2g
Dummy variables 𝑤 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 3770 . . . 4 ( 𝐴𝐵) ⊆ 𝐴
2 ssnum 8900 . . . 4 (( 𝐴 ∈ dom card ∧ ( 𝐴𝐵) ⊆ 𝐴) → ( 𝐴𝐵) ∈ dom card)
31, 2mpan2 707 . . 3 ( 𝐴 ∈ dom card → ( 𝐴𝐵) ∈ dom card)
4 isnum3 8818 . . . . 5 (( 𝐴𝐵) ∈ dom card ↔ (card‘( 𝐴𝐵)) ≈ ( 𝐴𝐵))
5 bren 8006 . . . . 5 ((card‘( 𝐴𝐵)) ≈ ( 𝐴𝐵) ↔ ∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
64, 5bitri 264 . . . 4 (( 𝐴𝐵) ∈ dom card ↔ ∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
7 simp1 1081 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
8 simp2 1082 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → 𝐵𝐴)
9 simp3 1083 . . . . . . 7 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
10 dmeq 5356 . . . . . . . . . . 11 (𝑤 = 𝑧 → dom 𝑤 = dom 𝑧)
1110unieqd 4478 . . . . . . . . . . 11 (𝑤 = 𝑧 dom 𝑤 = dom 𝑧)
1210, 11eqeq12d 2666 . . . . . . . . . 10 (𝑤 = 𝑧 → (dom 𝑤 = dom 𝑤 ↔ dom 𝑧 = dom 𝑧))
1310eqeq1d 2653 . . . . . . . . . . 11 (𝑤 = 𝑧 → (dom 𝑤 = ∅ ↔ dom 𝑧 = ∅))
14 rneq 5383 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ran 𝑤 = ran 𝑧)
1514unieqd 4478 . . . . . . . . . . 11 (𝑤 = 𝑧 ran 𝑤 = ran 𝑧)
1613, 15ifbieq2d 4144 . . . . . . . . . 10 (𝑤 = 𝑧 → if(dom 𝑤 = ∅, 𝐵, ran 𝑤) = if(dom 𝑧 = ∅, 𝐵, ran 𝑧))
17 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑧𝑤 = 𝑧)
1817, 11fveq12d 6235 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 dom 𝑤) = (𝑧 dom 𝑧))
1911fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → (𝑓 dom 𝑤) = (𝑓 dom 𝑧))
2019sneqd 4222 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → {(𝑓 dom 𝑤)} = {(𝑓 dom 𝑧)})
2118, 20uneq12d 3801 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → ((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) = ((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}))
2221eleq1d 2715 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴 ↔ ((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴))
2322, 20ifbieq1d 4142 . . . . . . . . . . 11 (𝑤 = 𝑧 → if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅) = if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))
2418, 23uneq12d 3801 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)) = ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))
2512, 16, 24ifbieq12d 4146 . . . . . . . . 9 (𝑤 = 𝑧 → if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))) = if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))
2625cbvmptv 4783 . . . . . . . 8 (𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))
27 recseq 7515 . . . . . . . 8 ((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))) → recs((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))))) = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅))))))
2826, 27ax-mp 5 . . . . . . 7 recs((𝑤 ∈ V ↦ if(dom 𝑤 = dom 𝑤, if(dom 𝑤 = ∅, 𝐵, ran 𝑤), ((𝑤 dom 𝑤) ∪ if(((𝑤 dom 𝑤) ∪ {(𝑓 dom 𝑤)}) ∈ 𝐴, {(𝑓 dom 𝑤)}, ∅))))) = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝑓 dom 𝑧)}) ∈ 𝐴, {(𝑓 dom 𝑧)}, ∅)))))
297, 8, 9, 28ttukeylem7 9375 . . . . . 6 ((𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
30293expib 1287 . . . . 5 (𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
3130exlimiv 1898 . . . 4 (∃𝑓 𝑓:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
326, 31sylbi 207 . . 3 (( 𝐴𝐵) ∈ dom card → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
333, 32syl 17 . 2 ( 𝐴 ∈ dom card → ((𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦)))
34333impib 1281 1 (( 𝐴 ∈ dom card ∧ 𝐵𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054  wal 1521   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  wpss 3608  c0 3948  ifcif 4119  𝒫 cpw 4191  {csn 4210   cuni 4468   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144  1-1-ontowf1o 5925  cfv 5926  recscrecs 7512  cen 7994  Fincfn 7997  cardccrd 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-om 7108  df-wrecs 7452  df-recs 7513  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-fin 8001  df-card 8803
This theorem is referenced by:  ttukeyg  9377
  Copyright terms: Public domain W3C validator