MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrdir Structured version   Visualization version   GIF version

Theorem tsrdir 17445
Description: A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
tsrdir (𝐴 ∈ TosetRel → 𝐴 ∈ DirRel)

Proof of Theorem tsrdir
StepHypRef Expression
1 tsrps 17428 . . . 4 (𝐴 ∈ TosetRel → 𝐴 ∈ PosetRel)
2 psrel 17410 . . . 4 (𝐴 ∈ PosetRel → Rel 𝐴)
31, 2syl 17 . . 3 (𝐴 ∈ TosetRel → Rel 𝐴)
4 psref2 17411 . . . . 5 (𝐴 ∈ PosetRel → (𝐴𝐴) = ( I ↾ 𝐴))
5 inss1 3979 . . . . 5 (𝐴𝐴) ⊆ 𝐴
64, 5syl6eqssr 3803 . . . 4 (𝐴 ∈ PosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
71, 6syl 17 . . 3 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
83, 7jca 495 . 2 (𝐴 ∈ TosetRel → (Rel 𝐴 ∧ ( I ↾ 𝐴) ⊆ 𝐴))
9 pstr2 17412 . . . 4 (𝐴 ∈ PosetRel → (𝐴𝐴) ⊆ 𝐴)
101, 9syl 17 . . 3 (𝐴 ∈ TosetRel → (𝐴𝐴) ⊆ 𝐴)
11 psdmrn 17414 . . . . . . 7 (𝐴 ∈ PosetRel → (dom 𝐴 = 𝐴 ∧ ran 𝐴 = 𝐴))
121, 11syl 17 . . . . . 6 (𝐴 ∈ TosetRel → (dom 𝐴 = 𝐴 ∧ ran 𝐴 = 𝐴))
1312simpld 476 . . . . 5 (𝐴 ∈ TosetRel → dom 𝐴 = 𝐴)
1413sqxpeqd 5281 . . . 4 (𝐴 ∈ TosetRel → (dom 𝐴 × dom 𝐴) = ( 𝐴 × 𝐴))
15 eqid 2770 . . . . . . 7 dom 𝐴 = dom 𝐴
1615istsr 17424 . . . . . 6 (𝐴 ∈ TosetRel ↔ (𝐴 ∈ PosetRel ∧ (dom 𝐴 × dom 𝐴) ⊆ (𝐴𝐴)))
1716simprbi 478 . . . . 5 (𝐴 ∈ TosetRel → (dom 𝐴 × dom 𝐴) ⊆ (𝐴𝐴))
18 relcoi2 5807 . . . . . . . 8 (Rel 𝐴 → (( I ↾ 𝐴) ∘ 𝐴) = 𝐴)
193, 18syl 17 . . . . . . 7 (𝐴 ∈ TosetRel → (( I ↾ 𝐴) ∘ 𝐴) = 𝐴)
20 cnvresid 6108 . . . . . . . . 9 ( I ↾ 𝐴) = ( I ↾ 𝐴)
21 cnvss 5433 . . . . . . . . . 10 (( I ↾ 𝐴) ⊆ 𝐴( I ↾ 𝐴) ⊆ 𝐴)
227, 21syl 17 . . . . . . . . 9 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
2320, 22syl5eqssr 3797 . . . . . . . 8 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
24 coss1 5416 . . . . . . . 8 (( I ↾ 𝐴) ⊆ 𝐴 → (( I ↾ 𝐴) ∘ 𝐴) ⊆ (𝐴𝐴))
2523, 24syl 17 . . . . . . 7 (𝐴 ∈ TosetRel → (( I ↾ 𝐴) ∘ 𝐴) ⊆ (𝐴𝐴))
2619, 25eqsstr3d 3787 . . . . . 6 (𝐴 ∈ TosetRel → 𝐴 ⊆ (𝐴𝐴))
27 relcnv 5644 . . . . . . . 8 Rel 𝐴
28 relcoi1 5808 . . . . . . . 8 (Rel 𝐴 → (𝐴 ∘ ( I ↾ 𝐴)) = 𝐴)
2927, 28ax-mp 5 . . . . . . 7 (𝐴 ∘ ( I ↾ 𝐴)) = 𝐴
30 relcnvfld 5810 . . . . . . . . . . 11 (Rel 𝐴 𝐴 = 𝐴)
313, 30syl 17 . . . . . . . . . 10 (𝐴 ∈ TosetRel → 𝐴 = 𝐴)
3231reseq2d 5534 . . . . . . . . 9 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) = ( I ↾ 𝐴))
3332, 7eqsstr3d 3787 . . . . . . . 8 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
34 coss2 5417 . . . . . . . 8 (( I ↾ 𝐴) ⊆ 𝐴 → (𝐴 ∘ ( I ↾ 𝐴)) ⊆ (𝐴𝐴))
3533, 34syl 17 . . . . . . 7 (𝐴 ∈ TosetRel → (𝐴 ∘ ( I ↾ 𝐴)) ⊆ (𝐴𝐴))
3629, 35syl5eqssr 3797 . . . . . 6 (𝐴 ∈ TosetRel → 𝐴 ⊆ (𝐴𝐴))
3726, 36unssd 3938 . . . . 5 (𝐴 ∈ TosetRel → (𝐴𝐴) ⊆ (𝐴𝐴))
3817, 37sstrd 3760 . . . 4 (𝐴 ∈ TosetRel → (dom 𝐴 × dom 𝐴) ⊆ (𝐴𝐴))
3914, 38eqsstr3d 3787 . . 3 (𝐴 ∈ TosetRel → ( 𝐴 × 𝐴) ⊆ (𝐴𝐴))
4010, 39jca 495 . 2 (𝐴 ∈ TosetRel → ((𝐴𝐴) ⊆ 𝐴 ∧ ( 𝐴 × 𝐴) ⊆ (𝐴𝐴)))
41 eqid 2770 . . 3 𝐴 = 𝐴
4241isdir 17439 . 2 (𝐴 ∈ TosetRel → (𝐴 ∈ DirRel ↔ ((Rel 𝐴 ∧ ( I ↾ 𝐴) ⊆ 𝐴) ∧ ((𝐴𝐴) ⊆ 𝐴 ∧ ( 𝐴 × 𝐴) ⊆ (𝐴𝐴)))))
438, 40, 42mpbir2and 684 1 (𝐴 ∈ TosetRel → 𝐴 ∈ DirRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  cun 3719  cin 3720  wss 3721   cuni 4572   I cid 5156   × cxp 5247  ccnv 5248  dom cdm 5249  ran crn 5250  cres 5251  ccom 5253  Rel wrel 5254  PosetRelcps 17405   TosetRel ctsr 17406  DirRelcdir 17435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-fun 6033  df-ps 17407  df-tsr 17408  df-dir 17437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator