MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxplem2 Structured version   Visualization version   GIF version

Theorem tsmsxplem2 22197
Description: Lemma for tsmsxp 22198. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b 𝐵 = (Base‘𝐺)
tsmsxp.g (𝜑𝐺 ∈ CMnd)
tsmsxp.2 (𝜑𝐺 ∈ TopGrp)
tsmsxp.a (𝜑𝐴𝑉)
tsmsxp.c (𝜑𝐶𝑊)
tsmsxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
tsmsxp.h (𝜑𝐻:𝐴𝐵)
tsmsxp.1 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
tsmsxp.j 𝐽 = (TopOpen‘𝐺)
tsmsxp.z 0 = (0g𝐺)
tsmsxp.p + = (+g𝐺)
tsmsxp.m = (-g𝐺)
tsmsxp.l (𝜑𝐿𝐽)
tsmsxp.3 (𝜑0𝐿)
tsmsxp.k (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))
tsmsxp.4 (𝜑 → ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈)
tsmsxp.n (𝜑𝑁 ∈ (𝒫 𝐶 ∩ Fin))
tsmsxp.s (𝜑𝐷 ⊆ (𝐾 × 𝑁))
tsmsxp.x (𝜑 → ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿)
tsmsxp.5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆)
tsmsxp.6 (𝜑 → ∀𝑔 ∈ (𝐿𝑚 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇)
Assertion
Ref Expression
tsmsxplem2 (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝑈)
Distinct variable groups:   𝑔,𝑘, 0   𝑐,𝑑,𝑔,𝑗,𝑘,𝑥,𝐺   𝐵,𝑔,𝑘   𝐷,𝑔,𝑗,𝑘,𝑥   𝑔,𝐿,𝑗,𝑥   𝐴,𝑔,𝑗,𝑘   𝐾,𝑐,𝑑,𝑔,𝑗,𝑘,𝑥   𝑆,𝑐   𝐻,𝑑,𝑔,𝑗,𝑘,𝑥   𝑁,𝑐,𝑑,𝑔,𝑥   𝑈,𝑐,𝑑   ,𝑑,𝑔,𝑗,𝑥   𝐶,𝑔,𝑗,𝑘   𝑇,𝑐,𝑑,𝑔   + ,𝑐,𝑑,𝑔   𝐹,𝑐,𝑑,𝑔,𝑗,𝑘,𝑥   𝜑,𝑔,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑐,𝑑)   𝐴(𝑥,𝑐,𝑑)   𝐵(𝑥,𝑗,𝑐,𝑑)   𝐶(𝑥,𝑐,𝑑)   𝐷(𝑐,𝑑)   + (𝑥,𝑗,𝑘)   𝑆(𝑥,𝑔,𝑗,𝑘,𝑑)   𝑇(𝑥,𝑗,𝑘)   𝑈(𝑥,𝑔,𝑗,𝑘)   𝐻(𝑐)   𝐽(𝑥,𝑔,𝑗,𝑘,𝑐,𝑑)   𝐿(𝑘,𝑐,𝑑)   (𝑘,𝑐)   𝑁(𝑗,𝑘)   𝑉(𝑥,𝑔,𝑗,𝑘,𝑐,𝑑)   𝑊(𝑥,𝑔,𝑗,𝑘,𝑐,𝑑)   0 (𝑥,𝑗,𝑐,𝑑)

Proof of Theorem tsmsxplem2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . 5 (𝜑𝐺 ∈ TopGrp)
2 tgpgrp 22122 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
4 tsmsxp.g . . . 4 (𝜑𝐺 ∈ CMnd)
5 isabl 18424 . . . 4 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
63, 4, 5sylanbrc 573 . . 3 (𝜑𝐺 ∈ Abel)
7 tsmsxp.b . . . 4 𝐵 = (Base‘𝐺)
8 tsmsxp.z . . . 4 0 = (0g𝐺)
9 tsmsxp.k . . . . . 6 (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))
10 elfpw 8445 . . . . . . 7 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐾𝐴𝐾 ∈ Fin))
1110simprbi 485 . . . . . 6 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾 ∈ Fin)
129, 11syl 17 . . . . 5 (𝜑𝐾 ∈ Fin)
13 tsmsxp.n . . . . . 6 (𝜑𝑁 ∈ (𝒫 𝐶 ∩ Fin))
14 elfpw 8445 . . . . . . 7 (𝑁 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑁𝐶𝑁 ∈ Fin))
1514simprbi 485 . . . . . 6 (𝑁 ∈ (𝒫 𝐶 ∩ Fin) → 𝑁 ∈ Fin)
1613, 15syl 17 . . . . 5 (𝜑𝑁 ∈ Fin)
17 xpfi 8408 . . . . 5 ((𝐾 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐾 × 𝑁) ∈ Fin)
1812, 16, 17syl2anc 574 . . . 4 (𝜑 → (𝐾 × 𝑁) ∈ Fin)
19 tsmsxp.f . . . . 5 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
2010simplbi 486 . . . . . . 7 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾𝐴)
219, 20syl 17 . . . . . 6 (𝜑𝐾𝐴)
2214simplbi 486 . . . . . . 7 (𝑁 ∈ (𝒫 𝐶 ∩ Fin) → 𝑁𝐶)
2313, 22syl 17 . . . . . 6 (𝜑𝑁𝐶)
24 xpss12 5278 . . . . . 6 ((𝐾𝐴𝑁𝐶) → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶))
2521, 23, 24syl2anc 574 . . . . 5 (𝜑 → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶))
2619, 25fssresd 6226 . . . 4 (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)):(𝐾 × 𝑁)⟶𝐵)
27 tsmsxp.3 . . . . 5 (𝜑0𝐿)
2826, 18, 27fdmfifsupp 8462 . . . 4 (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)) finSupp 0 )
297, 8, 4, 18, 26, 28gsumcl 18543 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵)
30 tsmsxp.h . . . . 5 (𝜑𝐻:𝐴𝐵)
3130, 21fssresd 6226 . . . 4 (𝜑 → (𝐻𝐾):𝐾𝐵)
3231, 12, 27fdmfifsupp 8462 . . . 4 (𝜑 → (𝐻𝐾) finSupp 0 )
337, 8, 4, 12, 31, 32gsumcl 18543 . . 3 (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝐵)
34 tsmsxp.p . . . 4 + = (+g𝐺)
35 tsmsxp.m . . . 4 = (-g𝐺)
367, 34, 35ablpncan3 18449 . . 3 ((𝐺 ∈ Abel ∧ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵 ∧ (𝐺 Σg (𝐻𝐾)) ∈ 𝐵)) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻𝐾)))
376, 29, 33, 36syl12anc 854 . 2 (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻𝐾)))
38 tsmsxp.5 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆)
394adantr 467 . . . . . . . 8 ((𝜑𝑦𝐾) → 𝐺 ∈ CMnd)
40 snfi 8215 . . . . . . . . 9 {𝑦} ∈ Fin
4116adantr 467 . . . . . . . . 9 ((𝜑𝑦𝐾) → 𝑁 ∈ Fin)
42 xpfi 8408 . . . . . . . . 9 (({𝑦} ∈ Fin ∧ 𝑁 ∈ Fin) → ({𝑦} × 𝑁) ∈ Fin)
4340, 41, 42sylancr 576 . . . . . . . 8 ((𝜑𝑦𝐾) → ({𝑦} × 𝑁) ∈ Fin)
4419adantr 467 . . . . . . . . 9 ((𝜑𝑦𝐾) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
4521sselda 3758 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → 𝑦𝐴)
4645snssd 4486 . . . . . . . . . 10 ((𝜑𝑦𝐾) → {𝑦} ⊆ 𝐴)
4723adantr 467 . . . . . . . . . 10 ((𝜑𝑦𝐾) → 𝑁𝐶)
48 xpss12 5278 . . . . . . . . . 10 (({𝑦} ⊆ 𝐴𝑁𝐶) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶))
4946, 47, 48syl2anc 574 . . . . . . . . 9 ((𝜑𝑦𝐾) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶))
5044, 49fssresd 6226 . . . . . . . 8 ((𝜑𝑦𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)):({𝑦} × 𝑁)⟶𝐵)
518fvexi 6360 . . . . . . . . . 10 0 ∈ V
5251a1i 11 . . . . . . . . 9 ((𝜑𝑦𝐾) → 0 ∈ V)
5350, 43, 52fdmfifsupp 8462 . . . . . . . 8 ((𝜑𝑦𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)) finSupp 0 )
547, 8, 39, 43, 50, 53gsumcl 18543 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ 𝐵)
5554fmpttd 6545 . . . . . 6 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))):𝐾𝐵)
56 eqid 2774 . . . . . . 7 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))
57 ovexd 6846 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ V)
5856, 12, 57, 27fsuppmptdm 8463 . . . . . 6 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) finSupp 0 )
597, 8, 35, 6, 12, 31, 55, 32, 58gsumsub 18575 . . . . 5 (𝜑 → (𝐺 Σg ((𝐻𝐾) ∘𝑓 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))))
60 fvexd 6361 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐻𝑦) ∈ V)
6130, 21feqresmpt 6409 . . . . . . 7 (𝜑 → (𝐻𝐾) = (𝑦𝐾 ↦ (𝐻𝑦)))
62 eqidd 2775 . . . . . . 7 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))
6312, 60, 57, 61, 62offval2 7082 . . . . . 6 (𝜑 → ((𝐻𝐾) ∘𝑓 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))))
6463oveq2d 6828 . . . . 5 (𝜑 → (𝐺 Σg ((𝐻𝐾) ∘𝑓 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))))
65 cmnmnd 18435 . . . . . . . . . . . 12 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
6639, 65syl 17 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → 𝐺 ∈ Mnd)
67 simpr 472 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → 𝑦𝐾)
6844adantr 467 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
6945adantr 467 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → 𝑦𝐴)
7047sselda 3758 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → 𝑧𝐶)
7168, 69, 70fovrnd 6974 . . . . . . . . . . . . 13 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → (𝑦𝐹𝑧) ∈ 𝐵)
7271fmpttd 6545 . . . . . . . . . . . 12 ((𝜑𝑦𝐾) → (𝑧𝑁 ↦ (𝑦𝐹𝑧)):𝑁𝐵)
73 eqid 2774 . . . . . . . . . . . . 13 (𝑧𝑁 ↦ (𝑦𝐹𝑧)) = (𝑧𝑁 ↦ (𝑦𝐹𝑧))
74 ovexd 6846 . . . . . . . . . . . . 13 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → (𝑦𝐹𝑧) ∈ V)
7573, 41, 74, 52fsuppmptdm 8463 . . . . . . . . . . . 12 ((𝜑𝑦𝐾) → (𝑧𝑁 ↦ (𝑦𝐹𝑧)) finSupp 0 )
767, 8, 39, 41, 72, 75gsumcl 18543 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵)
77 velsn 4342 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑦} ↔ 𝑤 = 𝑦)
78 ovres 6968 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ {𝑦} ∧ 𝑧𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧))
7977, 78sylanbr 572 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑦𝑧𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧))
80 oveq1 6819 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → (𝑤𝐹𝑧) = (𝑦𝐹𝑧))
8180adantr 467 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑦𝑧𝑁) → (𝑤𝐹𝑧) = (𝑦𝐹𝑧))
8279, 81eqtrd 2808 . . . . . . . . . . . . . 14 ((𝑤 = 𝑦𝑧𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑦𝐹𝑧))
8382mpteq2dva 4891 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧)) = (𝑧𝑁 ↦ (𝑦𝐹𝑧)))
8483oveq2d 6828 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
857, 84gsumsn 18581 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑦𝐾 ∧ (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
8666, 67, 76, 85syl3anc 1480 . . . . . . . . . 10 ((𝜑𝑦𝐾) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
8740a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → {𝑦} ∈ Fin)
887, 8, 39, 87, 41, 50, 53gsumxp 18602 . . . . . . . . . 10 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))))
89 ovres 6968 . . . . . . . . . . . . 13 ((𝑦𝐾𝑧𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧))
9089adantll 694 . . . . . . . . . . . 12 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧))
9190mpteq2dva 4891 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)) = (𝑧𝑁 ↦ (𝑦𝐹𝑧)))
9291oveq2d 6828 . . . . . . . . . 10 ((𝜑𝑦𝐾) → (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
9386, 88, 923eqtr4d 2818 . . . . . . . . 9 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))
9493mpteq2dva 4891 . . . . . . . 8 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦𝐾 ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)))))
9594oveq2d 6828 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))))
967, 8, 4, 12, 16, 26, 28gsumxp 18602 . . . . . . 7 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) = (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))))
9795, 96eqtr4d 2811 . . . . . 6 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))
9897oveq2d 6828 . . . . 5 (𝜑 → ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))))
9959, 64, 983eqtr3d 2816 . . . 4 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))))
100 oveq2 6820 . . . . . 6 (𝑔 = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → (𝐺 Σg 𝑔) = (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))))
101100eleq1d 2838 . . . . 5 (𝑔 = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → ((𝐺 Σg 𝑔) ∈ 𝑇 ↔ (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇))
102 tsmsxp.6 . . . . 5 (𝜑 → ∀𝑔 ∈ (𝐿𝑚 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇)
103 tsmsxp.x . . . . . . . 8 (𝜑 → ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿)
104 fveq2 6348 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
105 sneq 4336 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → {𝑥} = {𝑦})
106105xpeq1d 5291 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} × 𝑁) = ({𝑦} × 𝑁))
107106reseq2d 5546 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹 ↾ ({𝑥} × 𝑁)) = (𝐹 ↾ ({𝑦} × 𝑁)))
108107oveq2d 6828 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁))) = (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))
109104, 108oveq12d 6830 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) = ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))
110109eleq1d 2838 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿 ↔ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿))
111110rspccva 3464 . . . . . . . 8 ((∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿𝑦𝐾) → ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿)
112103, 111sylan 570 . . . . . . 7 ((𝜑𝑦𝐾) → ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿)
113112fmpttd 6545 . . . . . 6 (𝜑 → (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾𝐿)
114 tsmsxp.l . . . . . . 7 (𝜑𝐿𝐽)
115114, 9elmapd 8044 . . . . . 6 (𝜑 → ((𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿𝑚 𝐾) ↔ (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾𝐿))
116113, 115mpbird 248 . . . . 5 (𝜑 → (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿𝑚 𝐾))
117101, 102, 116rspcdva 3471 . . . 4 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇)
11899, 117eqeltrrd 2854 . . 3 (𝜑 → ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇)
119 tsmsxp.4 . . 3 (𝜑 → ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈)
120 oveq1 6819 . . . . 5 (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → (𝑐 + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑))
121120eleq1d 2838 . . . 4 (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → ((𝑐 + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈))
122 oveq2 6820 . . . . 5 (𝑑 = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))))
123122eleq1d 2838 . . . 4 (𝑑 = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → (((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈))
124121, 123rspc2va 3479 . . 3 ((((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆 ∧ ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇) ∧ ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈)
12538, 118, 119, 124syl21anc 855 . 2 (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈)
12637, 125eqeltrrd 2854 1 (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1634  wcel 2148  wral 3064  Vcvv 3355  cin 3728  wss 3729  𝒫 cpw 4307  {csn 4326  cmpt 4876   × cxp 5261  cres 5265  wf 6038  cfv 6042  (class class class)co 6812  𝑓 cof 7063  𝑚 cmap 8030  Fincfn 8130  Basecbs 16084  +gcplusg 16169  TopOpenctopn 16310  0gc0g 16328   Σg cgsu 16329  Mndcmnd 17522  Grpcgrp 17650  -gcsg 17652  CMndccmn 18420  Abelcabl 18421  TopGrpctgp 22115   tsums ctsu 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-inf2 8723  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-iin 4668  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-se 5223  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-isom 6051  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-of 7065  df-om 7234  df-1st 7336  df-2nd 7337  df-supp 7468  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-map 8032  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-fsupp 8453  df-oi 8592  df-card 8986  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-2 11302  df-n0 11517  df-z 11602  df-uz 11911  df-fz 12556  df-fzo 12696  df-seq 13031  df-hash 13344  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-0g 16330  df-gsum 16331  df-mre 16474  df-mrc 16475  df-acs 16477  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-mhm 17563  df-submnd 17564  df-grp 17653  df-minusg 17654  df-sbg 17655  df-mulg 17769  df-ghm 17886  df-cntz 17977  df-cmn 18422  df-abl 18423  df-tgp 22117
This theorem is referenced by:  tsmsxp  22198
  Copyright terms: Public domain W3C validator