MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssubm Structured version   Visualization version   GIF version

Theorem tsmssubm 21993
Description: Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmssubm.a (𝜑𝐴𝑉)
tsmssubm.1 (𝜑𝐺 ∈ CMnd)
tsmssubm.2 (𝜑𝐺 ∈ TopSp)
tsmssubm.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
tsmssubm.f (𝜑𝐹:𝐴𝑆)
tsmssubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
tsmssubm (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))

Proof of Theorem tsmssubm
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssubm.s . . . . . 6 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 tsmssubm.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
32submbas 17402 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
41, 3syl 17 . . . . 5 (𝜑𝑆 = (Base‘𝐻))
54eleq2d 2716 . . . 4 (𝜑 → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
65anbi1d 741 . . 3 (𝜑 → ((𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
7 elin 3829 . . . . 5 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑥𝑆))
8 ancom 465 . . . . 5 ((𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑥𝑆) ↔ (𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)))
97, 8bitri 264 . . . 4 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)))
10 eqid 2651 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
1110submss 17397 . . . . . . . . 9 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
121, 11syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ (Base‘𝐺))
1312sselda 3636 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
14 eqid 2651 . . . . . . . . 9 (TopOpen‘𝐺) = (TopOpen‘𝐺)
15 eqid 2651 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
16 tsmssubm.1 . . . . . . . . 9 (𝜑𝐺 ∈ CMnd)
17 tsmssubm.2 . . . . . . . . 9 (𝜑𝐺 ∈ TopSp)
18 tsmssubm.a . . . . . . . . 9 (𝜑𝐴𝑉)
19 tsmssubm.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝑆)
2019, 12fssd 6095 . . . . . . . . 9 (𝜑𝐹:𝐴⟶(Base‘𝐺))
2110, 14, 15, 16, 17, 18, 20eltsms 21983 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
2221baibd 968 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
2313, 22syldan 486 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
24 vex 3234 . . . . . . . . 9 𝑢 ∈ V
2524inex1 4832 . . . . . . . 8 (𝑢𝑆) ∈ V
2625a1i 11 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (𝑢𝑆) ∈ V)
272, 14resstopn 21038 . . . . . . . . 9 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
2827eleq2i 2722 . . . . . . . 8 (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ 𝑣 ∈ (TopOpen‘𝐻))
29 fvex 6239 . . . . . . . . . 10 (TopOpen‘𝐺) ∈ V
30 elrest 16135 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ V ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3129, 1, 30sylancr 696 . . . . . . . . 9 (𝜑 → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3231adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3328, 32syl5bbr 274 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑣 ∈ (TopOpen‘𝐻) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
34 eleq2 2719 . . . . . . . . 9 (𝑣 = (𝑢𝑆) → (𝑥𝑣𝑥 ∈ (𝑢𝑆)))
35 elin 3829 . . . . . . . . . . 11 (𝑥 ∈ (𝑢𝑆) ↔ (𝑥𝑢𝑥𝑆))
3635rbaib 967 . . . . . . . . . 10 (𝑥𝑆 → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3736adantl 481 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3834, 37sylan9bbr 737 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (𝑥𝑣𝑥𝑢))
39 eleq2 2719 . . . . . . . . . . . . 13 (𝑣 = (𝑢𝑆) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆)))
40 eqid 2651 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
41 eqid 2651 . . . . . . . . . . . . . . . . 17 (0g𝐻) = (0g𝐻)
422submmnd 17401 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
431, 42syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Mnd)
442subcmn 18288 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)
4516, 43, 44syl2anc 694 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 ∈ CMnd)
4645ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
47 elfpw 8309 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
4847simprbi 479 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
4948adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
5019ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝑆)
5147simplbi 475 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
5251adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
5350, 52fssresd 6109 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦𝑆)
544ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 = (Base‘𝐻))
5554feq3d 6070 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑦):𝑦𝑆 ↔ (𝐹𝑦):𝑦⟶(Base‘𝐻)))
5653, 55mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦⟶(Base‘𝐻))
57 fvex 6239 . . . . . . . . . . . . . . . . . . 19 (0g𝐻) ∈ V
5857a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐻) ∈ V)
5953, 49, 58fdmfifsupp 8326 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) finSupp (0g𝐻))
6040, 41, 46, 49, 56, 59gsumcl 18362 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ (Base‘𝐻))
6160, 54eleqtrrd 2733 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ 𝑆)
62 elin 3829 . . . . . . . . . . . . . . . 16 ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ ((𝐻 Σg (𝐹𝑦)) ∈ 𝑢 ∧ (𝐻 Σg (𝐹𝑦)) ∈ 𝑆))
6362rbaib 967 . . . . . . . . . . . . . . 15 ((𝐻 Σg (𝐹𝑦)) ∈ 𝑆 → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6461, 63syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
651ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 ∈ (SubMnd‘𝐺))
6649, 65, 53, 2gsumsubm 17420 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑦)) = (𝐻 Σg (𝐹𝑦)))
6766eleq1d 2715 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑦)) ∈ 𝑢 ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6864, 67bitr4d 271 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
6939, 68sylan9bbr 737 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑣 = (𝑢𝑆)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
7069an32s 863 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
7170imbi2d 329 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7271ralbidva 3014 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7372rexbidv 3081 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7438, 73imbi12d 333 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → ((𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ (𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7526, 33, 74ralxfr2d 4912 . . . . . 6 ((𝜑𝑥𝑆) → (∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7623, 75bitr4d 271 . . . . 5 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))))
7776pm5.32da 674 . . . 4 (𝜑 → ((𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
789, 77syl5bb 272 . . 3 (𝜑 → (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
79 eqid 2651 . . . 4 (TopOpen‘𝐻) = (TopOpen‘𝐻)
80 resstps 21039 . . . . . 6 ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
8117, 1, 80syl2anc 694 . . . . 5 (𝜑 → (𝐺s 𝑆) ∈ TopSp)
822, 81syl5eqel 2734 . . . 4 (𝜑𝐻 ∈ TopSp)
834feq3d 6070 . . . . 5 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
8419, 83mpbid 222 . . . 4 (𝜑𝐹:𝐴⟶(Base‘𝐻))
8540, 79, 15, 45, 82, 18, 84eltsms 21983 . . 3 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
866, 78, 853bitr4rd 301 . 2 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ 𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆)))
8786eqrdv 2649 1 (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607  𝒫 cpw 4191  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  Basecbs 15904  s cress 15905  t crest 16128  TopOpenctopn 16129  0gc0g 16147   Σg cgsu 16148  Mndcmnd 17341  SubMndcsubmnd 17381  CMndccmn 18239  TopSpctps 20784   tsums ctsu 21976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-tset 16007  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-cntz 17796  df-cmn 18241  df-fbas 19791  df-fg 19792  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-ntr 20872  df-nei 20950  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tsms 21977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator