Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssplit Structured version   Visualization version   GIF version

Theorem tsmssplit 22002
 Description: Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmssplit.b 𝐵 = (Base‘𝐺)
tsmssplit.p + = (+g𝐺)
tsmssplit.1 (𝜑𝐺 ∈ CMnd)
tsmssplit.2 (𝜑𝐺 ∈ TopMnd)
tsmssplit.a (𝜑𝐴𝑉)
tsmssplit.f (𝜑𝐹:𝐴𝐵)
tsmssplit.x (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
tsmssplit.y (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
tsmssplit.i (𝜑 → (𝐶𝐷) = ∅)
tsmssplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
tsmssplit (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))

Proof of Theorem tsmssplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 tsmssplit.b . . 3 𝐵 = (Base‘𝐺)
2 tsmssplit.p . . 3 + = (+g𝐺)
3 tsmssplit.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tsmssplit.2 . . 3 (𝜑𝐺 ∈ TopMnd)
5 tsmssplit.a . . 3 (𝜑𝐴𝑉)
6 tsmssplit.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
76ffvelrnda 6399 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
8 cmnmnd 18254 . . . . . . . 8 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
93, 8syl 17 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
10 eqid 2651 . . . . . . . 8 (0g𝐺) = (0g𝐺)
111, 10mndidcl 17355 . . . . . . 7 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
129, 11syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
1312adantr 480 . . . . 5 ((𝜑𝑘𝐴) → (0g𝐺) ∈ 𝐵)
147, 13ifcld 4164 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
15 eqid 2651 . . . 4 (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))
1614, 15fmptd 6425 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
177, 13ifcld 4164 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
18 eqid 2651 . . . 4 (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))
1917, 18fmptd 6425 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
20 tsmssplit.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
216feqmptd 6288 . . . . . . . 8 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
2221reseq1d 5427 . . . . . . 7 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
23 ssun1 3809 . . . . . . . . 9 𝐶 ⊆ (𝐶𝐷)
24 tsmssplit.u . . . . . . . . 9 (𝜑𝐴 = (𝐶𝐷))
2523, 24syl5sseqr 3687 . . . . . . . 8 (𝜑𝐶𝐴)
26 iftrue 4125 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
2726mpteq2ia 4773 . . . . . . . . 9 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐶 ↦ (𝐹𝑘))
28 resmpt 5484 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
29 resmpt 5484 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
3027, 28, 293eqtr4a 2711 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
3125, 30syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
3222, 31eqtr4d 2688 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶))
3332oveq2d 6706 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)))
34 tmdtps 21927 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
354, 34syl 17 . . . . . 6 (𝜑𝐺 ∈ TopSp)
36 eldifn 3766 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
3736adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
3837iffalsed 4130 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
3938, 5suppss2 7374 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐶)
401, 10, 3, 35, 5, 16, 39tsmsres 21994 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
4133, 40eqtrd 2685 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
4220, 41eleqtrd 2732 . . 3 (𝜑𝑋 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
43 tsmssplit.y . . . 4 (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
4421reseq1d 5427 . . . . . . 7 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
45 ssun2 3810 . . . . . . . . 9 𝐷 ⊆ (𝐶𝐷)
4645, 24syl5sseqr 3687 . . . . . . . 8 (𝜑𝐷𝐴)
47 iftrue 4125 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
4847mpteq2ia 4773 . . . . . . . . 9 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐷 ↦ (𝐹𝑘))
49 resmpt 5484 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
50 resmpt 5484 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
5148, 49, 503eqtr4a 2711 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5246, 51syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5344, 52eqtr4d 2688 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷))
5453oveq2d 6706 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)))
55 eldifn 3766 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
5655adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
5756iffalsed 4130 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
5857, 5suppss2 7374 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐷)
591, 10, 3, 35, 5, 19, 58tsmsres 21994 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
6054, 59eqtrd 2685 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
6143, 60eleqtrd 2732 . . 3 (𝜑𝑌 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
621, 2, 3, 4, 5, 16, 19, 42, 61tsmsadd 21997 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘𝑓 + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
6326adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
64 tsmssplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
65 noel 3952 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
66 eleq2 2719 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
6765, 66mtbiri 316 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
6864, 67syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
6968adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
70 elin 3829 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
7169, 70sylnib 317 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
72 imnan 437 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
7371, 72sylibr 224 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
7473imp 444 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
7574iffalsed 4130 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
7663, 75oveq12d 6708 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((𝐹𝑘) + (0g𝐺)))
771, 2, 10mndrid 17359 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
789, 77sylan 487 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
797, 78syldan 486 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
8079adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
8176, 80eqtrd 2685 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
8273con2d 129 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
8382imp 444 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
8483iffalsed 4130 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
8547adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
8684, 85oveq12d 6708 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((0g𝐺) + (𝐹𝑘)))
871, 2, 10mndlid 17358 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
889, 87sylan 487 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑘) ∈ 𝐵) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
897, 88syldan 486 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
9089adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
9186, 90eqtrd 2685 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
9224eleq2d 2716 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
93 elun 3786 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
9492, 93syl6bb 276 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
9594biimpa 500 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
9681, 91, 95mpjaodan 844 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
9796mpteq2dva 4777 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (𝐹𝑘)))
9821, 97eqtr4d 2688 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
99 eqidd 2652 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
100 eqidd 2652 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
1015, 14, 17, 99, 100offval2 6956 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘𝑓 + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
10298, 101eqtr4d 2688 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘𝑓 + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
103102oveq2d 6706 . 2 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘𝑓 + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
10462, 103eleqtrrd 2733 1 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ∖ cdif 3604   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ifcif 4119   ↦ cmpt 4762   ↾ cres 5145  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ∘𝑓 cof 6937  Basecbs 15904  +gcplusg 15988  0gc0g 16147  Mndcmnd 17341  CMndccmn 18239  TopSpctps 20784  TopMndctmd 21921   tsums ctsu 21976 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-topgen 16151  df-plusf 17288  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-cntz 17796  df-cmn 18241  df-fbas 19791  df-fg 19792  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-ntr 20872  df-nei 20950  df-cn 21079  df-cnp 21080  df-tx 21413  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tmd 21923  df-tsms 21977 This theorem is referenced by:  esumsplit  30243
 Copyright terms: Public domain W3C validator