MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskun Structured version   Visualization version   GIF version

Theorem tskun 9796
Description: The union of two elements of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskun (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → (𝐴𝐵) ∈ 𝑇)

Proof of Theorem tskun
StepHypRef Expression
1 uniprg 4598 . . 3 ((𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1125 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} = (𝐴𝐵))
3 simp1l 1240 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → 𝑇 ∈ Tarski)
4 simp1r 1241 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → Tr 𝑇)
5 tskpr 9780 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)
653adant1r 1188 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)
7 tskuni 9793 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ {𝐴, 𝐵} ∈ 𝑇) → {𝐴, 𝐵} ∈ 𝑇)
83, 4, 6, 7syl3anc 1477 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)
92, 8eqeltrrd 2836 1 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → (𝐴𝐵) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1628  wcel 2135  cun 3709  {cpr 4319   cuni 4584  Tr wtr 4900  Tarskictsk 9758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-ac2 9473
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-smo 7608  df-recs 7633  df-rdg 7671  df-1o 7725  df-2o 7726  df-oadd 7729  df-er 7907  df-map 8021  df-ixp 8071  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-oi 8576  df-har 8624  df-r1 8796  df-card 8951  df-aleph 8952  df-cf 8953  df-acn 8954  df-ac 9125  df-wina 9694  df-ina 9695  df-tsk 9759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator