![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsktrss | Structured version Visualization version GIF version |
Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsktrss | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1131 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → Tr 𝐴) | |
2 | dftr4 4892 | . . 3 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
3 | 1, 2 | sylib 208 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝒫 𝐴) |
4 | tskpwss 9780 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) | |
5 | 4 | 3adant2 1125 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
6 | 3, 5 | sstrd 3762 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 ∈ wcel 2145 ⊆ wss 3723 𝒫 cpw 4298 Tr wtr 4887 Tarskictsk 9776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-tr 4888 df-tsk 9777 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |