![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskssel | Structured version Visualization version GIF version |
Description: A part of a Tarski class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskssel | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomnen 8138 | . . 3 ⊢ (𝐴 ≺ 𝑇 → ¬ 𝐴 ≈ 𝑇) | |
2 | 1 | 3ad2ant3 1129 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → ¬ 𝐴 ≈ 𝑇) |
3 | tsken 9778 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) | |
4 | 3 | 3adant3 1126 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
5 | 4 | ord 853 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → (¬ 𝐴 ≈ 𝑇 → 𝐴 ∈ 𝑇)) |
6 | 2, 5 | mpd 15 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐴 ≺ 𝑇) → 𝐴 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 836 ∧ w3a 1071 ∈ wcel 2145 ⊆ wss 3723 class class class wbr 4786 ≈ cen 8106 ≺ csdm 8108 Tarskictsk 9772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-sdom 8112 df-tsk 9773 |
This theorem is referenced by: tskpr 9794 tskwe2 9797 tskord 9804 tskcard 9805 tskurn 9813 |
Copyright terms: Public domain | W3C validator |