![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskpw | Structured version Visualization version GIF version |
Description: Second axiom of a Tarski class. The powerset of an element of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskpw | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltsk2g 9779 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
2 | 1 | ibi 256 | . . . 4 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
3 | 2 | simpld 482 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇)) |
4 | simpr 471 | . . . 4 ⊢ ((𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
5 | 4 | ralimi 3101 | . . 3 ⊢ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇) |
7 | pweq 4301 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
8 | 7 | eleq1d 2835 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ 𝑇 ↔ 𝒫 𝐴 ∈ 𝑇)) |
9 | 8 | rspccva 3459 | . 2 ⊢ ((∀𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇 ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
10 | 6, 9 | sylan 569 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∨ wo 836 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 𝒫 cpw 4298 class class class wbr 4787 ≈ cen 8110 Tarskictsk 9776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-pow 4975 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-br 4788 df-tsk 9777 |
This theorem is referenced by: tsksn 9788 tsksuc 9790 tskr1om 9795 inttsk 9802 tskcard 9809 tskwun 9812 grutsk1 9849 pwinfi3 38394 |
Copyright terms: Public domain | W3C validator |