![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskpr | Structured version Visualization version GIF version |
Description: If 𝐴 and 𝐵 are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.) |
Ref | Expression |
---|---|
tskpr | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1131 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
2 | prssi 4499 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ⊆ 𝑇) | |
3 | 2 | 3adant1 1125 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ⊆ 𝑇) |
4 | prfi 8403 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
5 | isfinite 8725 | . . . . 5 ⊢ ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω) | |
6 | 4, 5 | mpbi 220 | . . . 4 ⊢ {𝐴, 𝐵} ≺ ω |
7 | ne0i 4065 | . . . . 5 ⊢ (𝐴 ∈ 𝑇 → 𝑇 ≠ ∅) | |
8 | tskinf 9804 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇) | |
9 | 7, 8 | sylan2 492 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → ω ≼ 𝑇) |
10 | sdomdomtr 8261 | . . . 4 ⊢ (({𝐴, 𝐵} ≺ ω ∧ ω ≼ 𝑇) → {𝐴, 𝐵} ≺ 𝑇) | |
11 | 6, 9, 10 | sylancr 698 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → {𝐴, 𝐵} ≺ 𝑇) |
12 | 11 | 3adant3 1127 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ≺ 𝑇) |
13 | tskssel 9792 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ {𝐴, 𝐵} ⊆ 𝑇 ∧ {𝐴, 𝐵} ≺ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) | |
14 | 1, 3, 12, 13 | syl3anc 1477 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → {𝐴, 𝐵} ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2140 ≠ wne 2933 ⊆ wss 3716 ∅c0 4059 {cpr 4324 class class class wbr 4805 ωcom 7232 ≼ cdom 8122 ≺ csdm 8123 Fincfn 8124 Tarskictsk 9783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-r1 8803 df-tsk 9784 |
This theorem is referenced by: tskop 9806 tskwun 9819 tskun 9821 grutsk1 9856 |
Copyright terms: Public domain | W3C validator |