![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskmcl | Structured version Visualization version GIF version |
Description: A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
tskmcl | ⊢ (tarskiMap‘𝐴) ∈ Tarski |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 9845 | . . 3 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
2 | ssrab2 3820 | . . . 4 ⊢ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski | |
3 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
4 | grothtsk 9841 | . . . . . . 7 ⊢ ∪ Tarski = V | |
5 | 3, 4 | syl6eleqr 2842 | . . . . . 6 ⊢ (𝐴 ∈ V → 𝐴 ∈ ∪ Tarski) |
6 | eluni2 4584 | . . . . . 6 ⊢ (𝐴 ∈ ∪ Tarski ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
7 | 5, 6 | sylib 208 | . . . . 5 ⊢ (𝐴 ∈ V → ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) |
8 | rabn0 4093 | . . . . 5 ⊢ ({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
9 | 7, 8 | sylibr 224 | . . . 4 ⊢ (𝐴 ∈ V → {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) |
10 | inttsk 9780 | . . . 4 ⊢ (({𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ⊆ Tarski ∧ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) | |
11 | 2, 9, 10 | sylancr 698 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ Tarski) |
12 | 1, 11 | eqeltrd 2831 | . 2 ⊢ (𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
13 | fvprc 6338 | . . 3 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) = ∅) | |
14 | 0tsk 9761 | . . 3 ⊢ ∅ ∈ Tarski | |
15 | 13, 14 | syl6eqel 2839 | . 2 ⊢ (¬ 𝐴 ∈ V → (tarskiMap‘𝐴) ∈ Tarski) |
16 | 12, 15 | pm2.61i 176 | 1 ⊢ (tarskiMap‘𝐴) ∈ Tarski |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2131 ≠ wne 2924 ∃wrex 3043 {crab 3046 Vcvv 3332 ⊆ wss 3707 ∅c0 4050 ∪ cuni 4580 ∩ cint 4619 ‘cfv 6041 Tarskictsk 9754 tarskiMapctskm 9843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-groth 9829 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-int 4620 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-er 7903 df-en 8114 df-dom 8115 df-tsk 9755 df-tskm 9844 |
This theorem is referenced by: eltskm 9849 |
Copyright terms: Public domain | W3C validator |