MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskin Structured version   Visualization version   GIF version

Theorem tskin 9787
Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskin ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)

Proof of Theorem tskin
StepHypRef Expression
1 inss1 3981 . 2 (𝐴𝐵) ⊆ 𝐴
2 tskss 9786 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ 𝑇)
31, 2mp3an3 1561 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2145  cin 3722  wss 3723  Tarskictsk 9776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-tsk 9777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator