MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskcard Structured version   Visualization version   GIF version

Theorem tskcard 9588
Description: An even more direct relationship than r1tskina 9589 to get an inaccessible cardinal out of a Tarski class: the size of any nonempty Tarski class is an inaccessible cardinal. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
tskcard ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc)

Proof of Theorem tskcard
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardeq0 9359 . . . 4 (𝑇 ∈ Tarski → ((card‘𝑇) = ∅ ↔ 𝑇 = ∅))
21necon3bid 2835 . . 3 (𝑇 ∈ Tarski → ((card‘𝑇) ≠ ∅ ↔ 𝑇 ≠ ∅))
32biimpar 502 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ≠ ∅)
4 eqid 2620 . . . . . 6 (𝑧 ∈ (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})) ↦ (har‘(𝑤𝑧))) = (𝑧 ∈ (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})) ↦ (har‘(𝑤𝑧)))
54pwcfsdom 9390 . . . . 5 (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ≺ ((ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ↑𝑚 (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})))
6 vpwex 4840 . . . . . . . . . . . 12 𝒫 𝑥 ∈ V
76canth2 8098 . . . . . . . . . . 11 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥
8 simpl 473 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑇 ∈ Tarski)
9 cardon 8755 . . . . . . . . . . . . . . . . 17 (card‘𝑇) ∈ On
109oneli 5823 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (card‘𝑇) → 𝑥 ∈ On)
1110adantl 482 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑥 ∈ On)
12 cardsdomelir 8784 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (card‘𝑇) → 𝑥𝑇)
1312adantl 482 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑥𝑇)
14 tskord 9587 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ On ∧ 𝑥𝑇) → 𝑥𝑇)
158, 11, 13, 14syl3anc 1324 . . . . . . . . . . . . . 14 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑥𝑇)
16 tskpw 9560 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
17 tskpwss 9559 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝒫 𝑥𝑇) → 𝒫 𝒫 𝑥𝑇)
1816, 17syldan 487 . . . . . . . . . . . . . 14 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝒫 𝑥𝑇)
1915, 18syldan 487 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝒫 𝑥𝑇)
20 ssdomg 7986 . . . . . . . . . . . . 13 (𝑇 ∈ Tarski → (𝒫 𝒫 𝑥𝑇 → 𝒫 𝒫 𝑥𝑇))
218, 19, 20sylc 65 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝒫 𝑥𝑇)
22 cardidg 9355 . . . . . . . . . . . . . 14 (𝑇 ∈ Tarski → (card‘𝑇) ≈ 𝑇)
2322ensymd 7992 . . . . . . . . . . . . 13 (𝑇 ∈ Tarski → 𝑇 ≈ (card‘𝑇))
2423adantr 481 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑇 ≈ (card‘𝑇))
25 domentr 8000 . . . . . . . . . . . 12 ((𝒫 𝒫 𝑥𝑇𝑇 ≈ (card‘𝑇)) → 𝒫 𝒫 𝑥 ≼ (card‘𝑇))
2621, 24, 25syl2anc 692 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝒫 𝑥 ≼ (card‘𝑇))
27 sdomdomtr 8078 . . . . . . . . . . 11 ((𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥 ≼ (card‘𝑇)) → 𝒫 𝑥 ≺ (card‘𝑇))
287, 26, 27sylancr 694 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝑥 ≺ (card‘𝑇))
2928ralrimiva 2963 . . . . . . . . 9 (𝑇 ∈ Tarski → ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇))
3029adantr 481 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇))
31 inawinalem 9496 . . . . . . . . . 10 ((card‘𝑇) ∈ On → (∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇) → ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦))
329, 31ax-mp 5 . . . . . . . . 9 (∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇) → ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦)
33 winainflem 9500 . . . . . . . . . 10 (((card‘𝑇) ≠ ∅ ∧ (card‘𝑇) ∈ On ∧ ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦) → ω ⊆ (card‘𝑇))
349, 33mp3an2 1410 . . . . . . . . 9 (((card‘𝑇) ≠ ∅ ∧ ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦) → ω ⊆ (card‘𝑇))
3532, 34sylan2 491 . . . . . . . 8 (((card‘𝑇) ≠ ∅ ∧ ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇)) → ω ⊆ (card‘𝑇))
363, 30, 35syl2anc 692 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ⊆ (card‘𝑇))
37 cardidm 8770 . . . . . . 7 (card‘(card‘𝑇)) = (card‘𝑇)
38 cardaleph 8897 . . . . . . 7 ((ω ⊆ (card‘𝑇) ∧ (card‘(card‘𝑇)) = (card‘𝑇)) → (card‘𝑇) = (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}))
3936, 37, 38sylancl 693 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) = (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}))
4039fveq2d 6182 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (cf‘(card‘𝑇)) = (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})))
4139, 40oveq12d 6653 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) = ((ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ↑𝑚 (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}))))
4239, 41breq12d 4657 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ↔ (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ≺ ((ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ↑𝑚 (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})))))
435, 42mpbiri 248 . . . 4 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
44 simp1 1059 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑇 ∈ Tarski)
45 simp3 1061 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
46 fvex 6188 . . . . . . . . . . . . . . . 16 (card‘𝑇) ∈ V
47 fvex 6188 . . . . . . . . . . . . . . . 16 (cf‘(card‘𝑇)) ∈ V
4846, 47elmap 7871 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ↔ 𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇))
49 fssxp 6047 . . . . . . . . . . . . . . 15 (𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇) → 𝑥 ⊆ ((cf‘(card‘𝑇)) × (card‘𝑇)))
5048, 49sylbi 207 . . . . . . . . . . . . . 14 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → 𝑥 ⊆ ((cf‘(card‘𝑇)) × (card‘𝑇)))
5115ex 450 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Tarski → (𝑥 ∈ (card‘𝑇) → 𝑥𝑇))
5251ssrdv 3601 . . . . . . . . . . . . . . 15 (𝑇 ∈ Tarski → (card‘𝑇) ⊆ 𝑇)
53 cfle 9061 . . . . . . . . . . . . . . . . 17 (cf‘(card‘𝑇)) ⊆ (card‘𝑇)
54 sstr 3603 . . . . . . . . . . . . . . . . 17 (((cf‘(card‘𝑇)) ⊆ (card‘𝑇) ∧ (card‘𝑇) ⊆ 𝑇) → (cf‘(card‘𝑇)) ⊆ 𝑇)
5553, 54mpan 705 . . . . . . . . . . . . . . . 16 ((card‘𝑇) ⊆ 𝑇 → (cf‘(card‘𝑇)) ⊆ 𝑇)
56 tskxpss 9579 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ⊆ 𝑇 ∧ (card‘𝑇) ⊆ 𝑇) → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)
57563exp 1262 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ Tarski → ((cf‘(card‘𝑇)) ⊆ 𝑇 → ((card‘𝑇) ⊆ 𝑇 → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)))
5857com23 86 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Tarski → ((card‘𝑇) ⊆ 𝑇 → ((cf‘(card‘𝑇)) ⊆ 𝑇 → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)))
5955, 58mpdi 45 . . . . . . . . . . . . . . 15 (𝑇 ∈ Tarski → ((card‘𝑇) ⊆ 𝑇 → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇))
6052, 59mpd 15 . . . . . . . . . . . . . 14 (𝑇 ∈ Tarski → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)
61 sstr2 3602 . . . . . . . . . . . . . 14 (𝑥 ⊆ ((cf‘(card‘𝑇)) × (card‘𝑇)) → (((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇𝑥𝑇))
6250, 60, 61syl2im 40 . . . . . . . . . . . . 13 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → (𝑇 ∈ Tarski → 𝑥𝑇))
6345, 44, 62sylc 65 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥𝑇)
64 simp2 1060 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → (cf‘(card‘𝑇)) ∈ (card‘𝑇))
65 ffn 6032 . . . . . . . . . . . . . . . . 17 (𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇) → 𝑥 Fn (cf‘(card‘𝑇)))
66 fndmeng 8019 . . . . . . . . . . . . . . . . 17 ((𝑥 Fn (cf‘(card‘𝑇)) ∧ (cf‘(card‘𝑇)) ∈ V) → (cf‘(card‘𝑇)) ≈ 𝑥)
6765, 47, 66sylancl 693 . . . . . . . . . . . . . . . 16 (𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇) → (cf‘(card‘𝑇)) ≈ 𝑥)
6848, 67sylbi 207 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → (cf‘(card‘𝑇)) ≈ 𝑥)
6968ensymd 7992 . . . . . . . . . . . . . 14 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → 𝑥 ≈ (cf‘(card‘𝑇)))
70 cardsdomelir 8784 . . . . . . . . . . . . . 14 ((cf‘(card‘𝑇)) ∈ (card‘𝑇) → (cf‘(card‘𝑇)) ≺ 𝑇)
71 ensdomtr 8081 . . . . . . . . . . . . . 14 ((𝑥 ≈ (cf‘(card‘𝑇)) ∧ (cf‘(card‘𝑇)) ≺ 𝑇) → 𝑥𝑇)
7269, 70, 71syl2an 494 . . . . . . . . . . . . 13 ((𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → 𝑥𝑇)
7345, 64, 72syl2anc 692 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥𝑇)
74 tskssel 9564 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑥𝑇) → 𝑥𝑇)
7544, 63, 73, 74syl3anc 1324 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥𝑇)
76753expia 1265 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → 𝑥𝑇))
7776ssrdv 3601 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ⊆ 𝑇)
78 ssdomg 7986 . . . . . . . . . 10 (𝑇 ∈ Tarski → (((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ⊆ 𝑇 → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇))
7978imp 445 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ⊆ 𝑇) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇)
8077, 79syldan 487 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇)
8123adantr 481 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → 𝑇 ≈ (card‘𝑇))
82 domentr 8000 . . . . . . . 8 ((((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇𝑇 ≈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ (card‘𝑇))
8380, 81, 82syl2anc 692 . . . . . . 7 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ (card‘𝑇))
84 domnsym 8071 . . . . . . 7 (((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ (card‘𝑇) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
8583, 84syl 17 . . . . . 6 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
8685ex 450 . . . . 5 (𝑇 ∈ Tarski → ((cf‘(card‘𝑇)) ∈ (card‘𝑇) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))))
8786adantr 481 . . . 4 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((cf‘(card‘𝑇)) ∈ (card‘𝑇) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))))
8843, 87mt2d 131 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ¬ (cf‘(card‘𝑇)) ∈ (card‘𝑇))
89 cfon 9062 . . . . . 6 (cf‘(card‘𝑇)) ∈ On
9089, 9onsseli 5830 . . . . 5 ((cf‘(card‘𝑇)) ⊆ (card‘𝑇) ↔ ((cf‘(card‘𝑇)) ∈ (card‘𝑇) ∨ (cf‘(card‘𝑇)) = (card‘𝑇)))
9153, 90mpbi 220 . . . 4 ((cf‘(card‘𝑇)) ∈ (card‘𝑇) ∨ (cf‘(card‘𝑇)) = (card‘𝑇))
9291ori 390 . . 3 (¬ (cf‘(card‘𝑇)) ∈ (card‘𝑇) → (cf‘(card‘𝑇)) = (card‘𝑇))
9388, 92syl 17 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (cf‘(card‘𝑇)) = (card‘𝑇))
94 elina 9494 . 2 ((card‘𝑇) ∈ Inacc ↔ ((card‘𝑇) ≠ ∅ ∧ (cf‘(card‘𝑇)) = (card‘𝑇) ∧ ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇)))
953, 93, 30, 94syl3anbrc 1244 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  {crab 2913  Vcvv 3195  wss 3567  c0 3907  𝒫 cpw 4149   cint 4466   class class class wbr 4644  cmpt 4720   × cxp 5102  Oncon0 5711   Fn wfn 5871  wf 5872  cfv 5876  (class class class)co 6635  ωcom 7050  𝑚 cmap 7842  cen 7937  cdom 7938  csdm 7939  harchar 8446  cardccrd 8746  cale 8747  cfccf 8748  Inacccina 9490  Tarskictsk 9555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-ac2 9270
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-smo 7428  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-oi 8400  df-har 8448  df-r1 8612  df-card 8750  df-aleph 8751  df-cf 8752  df-acn 8753  df-ac 8924  df-ina 9492  df-tsk 9556
This theorem is referenced by:  r1tskina  9589  tskuni  9590  inaprc  9643
  Copyright terms: Public domain W3C validator