![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > truan | Structured version Visualization version GIF version |
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
truan | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1600 | . . 3 ⊢ ⊤ | |
2 | 1 | biantrur 528 | . 2 ⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) |
3 | 2 | bicomi 214 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ⊤wtru 1597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1599 |
This theorem is referenced by: truanfal 1620 euelss 4022 tgcgr4 25546 aciunf1 29693 sgn3da 30833 truconj 34135 tradd 34139 ifpdfbi 38237 ifpdfxor 38251 dfid7 38338 eel0TT 39348 eelT00 39349 eelTTT 39350 eelT11 39351 eelT12 39353 eelTT1 39354 eelT01 39355 eel0T1 39356 eelTT 39417 uunT1p1 39427 uunTT1 39439 uunTT1p1 39440 uunTT1p2 39441 uunT11 39442 uunT11p1 39443 uunT11p2 39444 uunT12 39445 uunT12p1 39446 uunT12p2 39447 uunT12p3 39448 uunT12p4 39449 uunT12p5 39450 |
Copyright terms: Public domain | W3C validator |