![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trsuc | Structured version Visualization version GIF version |
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
trsuc | ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trel 4792 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
2 | sssucid 5840 | . . . . 5 ⊢ 𝐵 ⊆ suc 𝐵 | |
3 | ssexg 4837 | . . . . 5 ⊢ ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ V) | |
4 | 2, 3 | mpan 706 | . . . 4 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
5 | sucidg 5841 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ∈ suc 𝐵) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ suc 𝐵) |
7 | 6 | ancri 574 | . 2 ⊢ (suc 𝐵 ∈ 𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴)) |
8 | 1, 7 | impel 484 | 1 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 Tr wtr 4785 suc csuc 5763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-in 3614 df-ss 3621 df-sn 4211 df-uni 4469 df-tr 4786 df-suc 5767 |
This theorem is referenced by: onuninsuci 7082 limsuc 7091 tz7.44-2 7548 cantnflt 8607 cantnfp1lem3 8615 cantnflem1b 8621 cantnflem1 8624 cnfcom 8635 axdc3lem2 9311 inar1 9635 bnj967 31141 limsuc2 37928 |
Copyright terms: Public domain | W3C validator |