![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trssord | Structured version Visualization version GIF version |
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
Ref | Expression |
---|---|
trssord | ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wess 5130 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ( E We 𝐵 → E We 𝐴)) | |
2 | ordwe 5774 | . . . . 5 ⊢ (Ord 𝐵 → E We 𝐵) | |
3 | 1, 2 | impel 484 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → E We 𝐴) |
4 | 3 | anim2i 592 | . . 3 ⊢ ((Tr 𝐴 ∧ (𝐴 ⊆ 𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ E We 𝐴)) |
5 | 4 | 3impb 1279 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ E We 𝐴)) |
6 | df-ord 5764 | . 2 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
7 | 5, 6 | sylibr 224 | 1 ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵) → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 ⊆ wss 3607 Tr wtr 4785 E cep 5057 We wwe 5101 Ord word 5760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-ral 2946 df-in 3614 df-ss 3621 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 |
This theorem is referenced by: ordin 5791 ssorduni 7027 suceloni 7055 ordom 7116 ordtypelem2 8465 hartogs 8490 card2on 8500 tskwe 8814 ondomon 9423 dford3lem2 37911 dford3 37912 iunord 42747 |
Copyright terms: Public domain | W3C validator |