![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 4789 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
2 | sseq1 3659 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 2 | rspccv 3337 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | sylbi 207 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 Tr wtr 4785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-in 3614 df-ss 3621 df-uni 4469 df-tr 4786 |
This theorem is referenced by: trin 4796 triun 4799 trintss 4802 tz7.2 5127 ordelss 5777 ordelord 5783 tz7.7 5787 trsucss 5849 omsinds 7126 tc2 8656 tcel 8659 r1ord3g 8680 r1ord2 8682 r1pwss 8685 rankwflemb 8694 r1elwf 8697 r1elssi 8706 uniwf 8720 itunitc1 9280 wunelss 9568 tskr1om2 9628 tskuni 9643 tskurn 9649 gruelss 9654 dfon2lem6 31817 dfon2lem9 31820 setindtr 37908 dford3lem1 37910 ordelordALT 39064 trsspwALT 39362 trsspwALT2 39363 trsspwALT3 39364 pwtrVD 39373 ordelordALTVD 39417 |
Copyright terms: Public domain | W3C validator |