Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperrel2dg Structured version   Visualization version   GIF version

Theorem trrelsuperrel2dg 38280
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 20-Jul-2020.)
Hypothesis
Ref Expression
trrelsuperrel2dg.s (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Assertion
Ref Expression
trrelsuperrel2dg (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))

Proof of Theorem trrelsuperrel2dg
StepHypRef Expression
1 ssun1 3809 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
2 trrelsuperrel2dg.s . . 3 (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl5sseqr 3687 . 2 (𝜑𝑅𝑆)
4 xptrrel 13765 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
5 ssun2 3810 . . . . 5 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
64, 5sstri 3645 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
76a1i 11 . . 3 (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
82, 2coeq12d 5319 . . . 4 (𝜑 → (𝑆𝑆) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
9 coundir 5675 . . . . . 6 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
10 relcnv 5538 . . . . . . 7 Rel 𝑅
11 cocnvcnv1 5684 . . . . . . . . 9 (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
12 relssdmrn 5694 . . . . . . . . . . 11 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
13 dmcnvcnv 5380 . . . . . . . . . . . 12 dom 𝑅 = dom 𝑅
14 rncnvcnv 5381 . . . . . . . . . . . 12 ran 𝑅 = ran 𝑅
1513, 14xpeq12i 5171 . . . . . . . . . . 11 (dom 𝑅 × ran 𝑅) = (dom 𝑅 × ran 𝑅)
1612, 15syl6sseq 3684 . . . . . . . . . 10 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
17 coss1 5310 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1816, 17syl 17 . . . . . . . . 9 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1911, 18syl5eqssr 3683 . . . . . . . 8 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
20 ssequn1 3816 . . . . . . . 8 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ↔ ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2119, 20sylib 208 . . . . . . 7 (Rel 𝑅 → ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2210, 21ax-mp 5 . . . . . 6 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
239, 22eqtri 2673 . . . . 5 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
24 coundi 5674 . . . . . 6 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
25 cocnvcnv2 5685 . . . . . . . . 9 ((dom 𝑅 × ran 𝑅) ∘ 𝑅) = ((dom 𝑅 × ran 𝑅) ∘ 𝑅)
26 coss2 5311 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2716, 26syl 17 . . . . . . . . 9 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2825, 27syl5eqssr 3683 . . . . . . . 8 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
29 ssequn1 3816 . . . . . . . 8 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3028, 29sylib 208 . . . . . . 7 (Rel 𝑅 → (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3110, 30ax-mp 5 . . . . . 6 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3224, 31eqtri 2673 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3323, 32eqtri 2673 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
348, 33syl6eq 2701 . . 3 (𝜑 → (𝑆𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
357, 34, 23sstr4d 3681 . 2 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
363, 35jca 553 1 (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  cun 3605  wss 3607   × cxp 5141  ccnv 5142  dom cdm 5143  ran crn 5144  ccom 5147  Rel wrel 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator