Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredtr Structured version   Visualization version   GIF version

Theorem trpredtr 31854
Description: The transitive predecessors are transitive in 𝑅 and 𝐴 (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredtr ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))

Proof of Theorem trpredtr
Dummy variables 𝑎 𝑓 𝑖 𝑗 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltrpred 31850 . 2 (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
2 simplr 807 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑖 ∈ ω)
3 peano2 7128 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
42, 3syl 17 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → suc 𝑖 ∈ ω)
5 simpr 476 . . . . . . 7 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
6 ssid 3657 . . . . . . 7 Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)
7 predeq3 5722 . . . . . . . . . 10 (𝑡 = 𝑌 → Pred(𝑅, 𝐴, 𝑡) = Pred(𝑅, 𝐴, 𝑌))
87sseq2d 3666 . . . . . . . . 9 (𝑡 = 𝑌 → (Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)))
98rspcev 3340 . . . . . . . 8 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → ∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡))
10 ssiun 4594 . . . . . . . 8 (∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
119, 10syl 17 . . . . . . 7 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
125, 6, 11sylancl 695 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
13 fvex 6239 . . . . . . . 8 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V
14 setlikespec 5739 . . . . . . . . . . . . 13 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
15 trpredlem1 31851 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1614, 15syl 17 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1716sseld 3635 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝐴))
18 setlikespec 5739 . . . . . . . . . . . . 13 ((𝑡𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑡) ∈ V)
1918expcom 450 . . . . . . . . . . . 12 (𝑅 Se 𝐴 → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2019adantl 481 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2117, 20syld 47 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2221ralrimiv 2994 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2322ad2antrr 762 . . . . . . . 8 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
24 iunexg 7185 . . . . . . . 8 ((((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V ∧ ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2513, 23, 24sylancr 696 . . . . . . 7 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
26 nfcv 2793 . . . . . . . 8 𝑓Pred(𝑅, 𝐴, 𝑋)
27 nfcv 2793 . . . . . . . 8 𝑓𝑖
28 nfcv 2793 . . . . . . . 8 𝑓 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡)
29 predeq3 5722 . . . . . . . . . . . 12 (𝑦 = 𝑡 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑡))
3029cbviunv 4591 . . . . . . . . . . 11 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡)
31 iuneq1 4566 . . . . . . . . . . 11 (𝑎 = 𝑓 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3230, 31syl5eq 2697 . . . . . . . . . 10 (𝑎 = 𝑓 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3332cbvmptv 4783 . . . . . . . . 9 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
34 rdgeq1 7552 . . . . . . . . 9 ((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)))
35 reseq1 5422 . . . . . . . . 9 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
3633, 34, 35mp2b 10 . . . . . . . 8 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
37 iuneq1 4566 . . . . . . . 8 (𝑓 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
3826, 27, 28, 36, 37frsucmpt 7578 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
392, 25, 38syl2anc 694 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
4012, 39sseqtr4d 3675 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
41 fveq2 6229 . . . . . . . . 9 (𝑗 = suc 𝑖 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
4241sseq2d 3666 . . . . . . . 8 (𝑗 = suc 𝑖 → (Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)))
4342rspcev 3340 . . . . . . 7 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → ∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
44 ssiun 4594 . . . . . . 7 (∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
4543, 44syl 17 . . . . . 6 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
46 dftrpred2 31843 . . . . . 6 TrPred(𝑅, 𝐴, 𝑋) = 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
4745, 46syl6sseqr 3685 . . . . 5 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
484, 40, 47syl2anc 694 . . . 4 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
4948ex 449 . . 3 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
5049rexlimdva 3060 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
511, 50syl5bi 232 1 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  wss 3607   ciun 4552  cmpt 4762   Se wse 5100  cres 5145  Predcpred 5717  suc csuc 5763  cfv 5926  ωcom 7107  reccrdg 7550  TrPredctrpred 31841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-trpred 31842
This theorem is referenced by:  trpredelss  31856  frmin  31867
  Copyright terms: Public domain W3C validator