Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredmintr Structured version   Visualization version   GIF version

Theorem trpredmintr 32058
Description: The transitive predecessors form the smallest class transitive in 𝑅 and 𝐴. That is, if 𝐵 is another 𝑅, 𝐴 transitive class containing Pred(𝑅, 𝐴, 𝑋), then TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵 (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredmintr (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅   𝑦,𝑋

Proof of Theorem trpredmintr
Dummy variables 𝑎 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 32046 . 2 TrPred(𝑅, 𝐴, 𝑋) = 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)
2 fveq2 6354 . . . . . . . 8 (𝑗 = ∅ → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))
32sseq1d 3774 . . . . . . 7 (𝑗 = ∅ → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐵))
43imbi2d 329 . . . . . 6 (𝑗 = ∅ → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐵)))
5 fveq2 6354 . . . . . . . 8 (𝑗 = 𝑘 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘))
65sseq1d 3774 . . . . . . 7 (𝑗 = 𝑘 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵))
76imbi2d 329 . . . . . 6 (𝑗 = 𝑘 → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)))
8 fveq2 6354 . . . . . . . 8 (𝑗 = suc 𝑘 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘))
98sseq1d 3774 . . . . . . 7 (𝑗 = suc 𝑘 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵))
109imbi2d 329 . . . . . 6 (𝑗 = suc 𝑘 → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)))
11 fveq2 6354 . . . . . . . 8 (𝑗 = 𝑖 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
1211sseq1d 3774 . . . . . . 7 (𝑗 = 𝑖 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))
1312imbi2d 329 . . . . . 6 (𝑗 = 𝑖 → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)))
14 setlikespec 5863 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
15 fr0g 7702 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
1614, 15syl 17 . . . . . . . 8 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
1716adantr 472 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
18 simprr 813 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
1917, 18eqsstrd 3781 . . . . . 6 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐵)
20 fvex 6364 . . . . . . . . . . 11 ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ∈ V
21 trpredlem1 32054 . . . . . . . . . . . . . . . 16 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐴)
2214, 21syl 17 . . . . . . . . . . . . . . 15 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐴)
2322sseld 3744 . . . . . . . . . . . . . 14 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝐴))
24 setlikespec 5863 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V)
2524expcom 450 . . . . . . . . . . . . . . 15 (𝑅 Se 𝐴 → (𝑦𝐴 → Pred(𝑅, 𝐴, 𝑦) ∈ V))
2625adantl 473 . . . . . . . . . . . . . 14 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦𝐴 → Pred(𝑅, 𝐴, 𝑦) ∈ V))
2723, 26syld 47 . . . . . . . . . . . . 13 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → Pred(𝑅, 𝐴, 𝑦) ∈ V))
2827ralrimiv 3104 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
2928ad2antrr 764 . . . . . . . . . . 11 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
30 iunexg 7310 . . . . . . . . . . 11 ((((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ∈ V ∧ ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) → 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
3120, 29, 30sylancr 698 . . . . . . . . . 10 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
32 nfcv 2903 . . . . . . . . . . 11 𝑎Pred(𝑅, 𝐴, 𝑋)
33 nfcv 2903 . . . . . . . . . . 11 𝑎𝑘
34 nfcv 2903 . . . . . . . . . . 11 𝑎 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦)
35 eqid 2761 . . . . . . . . . . 11 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
36 predeq3 5846 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑑 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑑))
3736cbviunv 4712 . . . . . . . . . . . . . . . . 17 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑑𝑎 Pred(𝑅, 𝐴, 𝑑)
38 iuneq1 4687 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 𝑑𝑎 Pred(𝑅, 𝐴, 𝑑) = 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑))
3937, 38syl5eq 2807 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑐 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑))
4039cbvmptv 4903 . . . . . . . . . . . . . . 15 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑))
41 rdgeq1 7678 . . . . . . . . . . . . . . 15 ((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)))
42 reseq1 5546 . . . . . . . . . . . . . . 15 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
4340, 41, 42mp2b 10 . . . . . . . . . . . . . 14 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
4443fveq1i 6355 . . . . . . . . . . . . 13 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) = ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)
4544eqeq2i 2773 . . . . . . . . . . . 12 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ↔ 𝑎 = ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘))
46 iuneq1 4687 . . . . . . . . . . . 12 (𝑎 = ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
4745, 46sylbi 207 . . . . . . . . . . 11 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
4832, 33, 34, 35, 47frsucmpt 7704 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
4931, 48sylan2 492 . . . . . . . . 9 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
5044sseq1i 3771 . . . . . . . . . . . 12 (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 ↔ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)
5150anbi2i 732 . . . . . . . . . . 11 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵))
52 nfv 1993 . . . . . . . . . . . . . . 15 𝑦(𝑋𝐴𝑅 Se 𝐴)
53 nfra1 3080 . . . . . . . . . . . . . . . 16 𝑦𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵
54 nfv 1993 . . . . . . . . . . . . . . . 16 𝑦Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵
5553, 54nfan 1978 . . . . . . . . . . . . . . 15 𝑦(∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
5652, 55nfan 1978 . . . . . . . . . . . . . 14 𝑦((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵))
57 nfv 1993 . . . . . . . . . . . . . 14 𝑦((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵
5856, 57nfan 1978 . . . . . . . . . . . . 13 𝑦(((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)
59 ssel 3739 . . . . . . . . . . . . . 14 (((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝐵))
60 rsp 3068 . . . . . . . . . . . . . . 15 (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → (𝑦𝐵 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
6160ad2antrl 766 . . . . . . . . . . . . . 14 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (𝑦𝐵 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
6259, 61sylan9r 693 . . . . . . . . . . . . 13 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
6358, 62ralrimi 3096 . . . . . . . . . . . 12 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6463adantl 473 . . . . . . . . . . 11 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6551, 64sylan2b 493 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
66 iunss 4714 . . . . . . . . . 10 ( 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6765, 66sylibr 224 . . . . . . . . 9 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6849, 67eqsstrd 3781 . . . . . . . 8 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)
6968exp32 632 . . . . . . 7 (𝑘 ∈ ω → (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)))
7069a2d 29 . . . . . 6 (𝑘 ∈ ω → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)))
714, 7, 10, 13, 19, 70finds 7259 . . . . 5 (𝑖 ∈ ω → (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))
7271com12 32 . . . 4 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))
7372ralrimiv 3104 . . 3 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)
74 iunss 4714 . . 3 ( 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵 ↔ ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)
7573, 74sylibr 224 . 2 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)
761, 75syl5eqss 3791 1 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wral 3051  Vcvv 3341  wss 3716  c0 4059   ciun 4673  cmpt 4882   Se wse 5224  cres 5269  Predcpred 5841  suc csuc 5887  cfv 6050  ωcom 7232  reccrdg 7676  TrPredctrpred 32044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-trpred 32045
This theorem is referenced by:  trpredelss  32059  dftrpred3g  32060  trpredpo  32062
  Copyright terms: Public domain W3C validator