![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trpredex | Structured version Visualization version GIF version |
Description: The transitive predecessors of a relation form a set (NOTE: this is the first theorem in the transitive predecessor series that requires infinity). (Contributed by Scott Fenton, 18-Feb-2011.) |
Ref | Expression |
---|---|
trpredex | ⊢ TrPred(𝑅, 𝐴, 𝑋) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trpred 32044 | . 2 ⊢ TrPred(𝑅, 𝐴, 𝑋) = ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) | |
2 | frfnom 7700 | . . . . 5 ⊢ (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) Fn ω | |
3 | omex 8715 | . . . . 5 ⊢ ω ∈ V | |
4 | fnex 6646 | . . . . 5 ⊢ (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) Fn ω ∧ ω ∈ V) → (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) ∈ V) | |
5 | 2, 3, 4 | mp2an 710 | . . . 4 ⊢ (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) ∈ V |
6 | 5 | rnex 7266 | . . 3 ⊢ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) ∈ V |
7 | 6 | uniex 7119 | . 2 ⊢ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) ∈ V |
8 | 1, 7 | eqeltri 2835 | 1 ⊢ TrPred(𝑅, 𝐴, 𝑋) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 Vcvv 3340 ∪ cuni 4588 ∪ ciun 4672 ↦ cmpt 4881 ran crn 5267 ↾ cres 5268 Predcpred 5840 Fn wfn 6044 ωcom 7231 reccrdg 7675 TrPredctrpred 32043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-trpred 32044 |
This theorem is referenced by: frmin 32069 |
Copyright terms: Public domain | W3C validator |