![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trpredelss | Structured version Visualization version GIF version |
Description: Given a transitive predecessor 𝑌 of 𝑋, the transitive predecessors of 𝑌 are a subset of the transitive predecessors of 𝑋. (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
trpredelss | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setlikespec 5843 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) | |
2 | trpredss 32065 | . . . . 5 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∈ V → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴) |
4 | 3 | sselda 3752 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → 𝑌 ∈ 𝐴) |
5 | simplr 752 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → 𝑅 Se 𝐴) | |
6 | trpredtr 32066 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑦 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋))) | |
7 | 6 | ralrimiv 3114 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ TrPred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
8 | 7 | adantr 466 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → ∀𝑦 ∈ TrPred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
9 | trpredtr 32066 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) | |
10 | 9 | imp 393 | . . 3 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
11 | trpredmintr 32067 | . . 3 ⊢ (((𝑌 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ TrPred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)) | |
12 | 4, 5, 8, 10, 11 | syl22anc 1477 | . 2 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋)) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)) |
13 | 12 | ex 397 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 ⊆ wss 3723 Se wse 5207 Predcpred 5821 TrPredctrpred 32053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-om 7217 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-trpred 32054 |
This theorem is referenced by: dftrpred3g 32069 |
Copyright terms: Public domain | W3C validator |