![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trnei | Structured version Visualization version GIF version |
Description: The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 21912 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
trnei | ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 20940 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑌) → 𝐽 ∈ Top) | |
2 | 1 | 3ad2ant1 1128 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐽 ∈ Top) |
3 | simp2 1132 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐴 ⊆ 𝑌) | |
4 | toponuni 20941 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐽) | |
5 | 4 | 3ad2ant1 1128 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑌 = ∪ 𝐽) |
6 | 3, 5 | sseqtrd 3782 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐴 ⊆ ∪ 𝐽) |
7 | simp3 1133 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑃 ∈ 𝑌) | |
8 | 7, 5 | eleqtrd 2841 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝑃 ∈ ∪ 𝐽) |
9 | eqid 2760 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | neindisj2 21149 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
11 | 2, 6, 8, 10 | syl3anc 1477 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
12 | simp1 1131 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → 𝐽 ∈ (TopOn‘𝑌)) | |
13 | 7 | snssd 4485 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → {𝑃} ⊆ 𝑌) |
14 | snnzg 4451 | . . . . 5 ⊢ (𝑃 ∈ 𝑌 → {𝑃} ≠ ∅) | |
15 | 14 | 3ad2ant3 1130 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → {𝑃} ≠ ∅) |
16 | neifil 21905 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ {𝑃} ⊆ 𝑌 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌)) | |
17 | 12, 13, 15, 16 | syl3anc 1477 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌)) |
18 | trfil2 21912 | . . 3 ⊢ ((((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) | |
19 | 17, 3, 18 | syl2anc 696 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → ((((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ ((nei‘𝐽)‘{𝑃})(𝑣 ∩ 𝐴) ≠ ∅)) |
20 | 11, 19 | bitr4d 271 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∩ cin 3714 ⊆ wss 3715 ∅c0 4058 {csn 4321 ∪ cuni 4588 ‘cfv 6049 (class class class)co 6814 ↾t crest 16303 Topctop 20920 TopOnctopon 20937 clsccl 21044 neicnei 21123 Filcfil 21870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-rest 16305 df-fbas 19965 df-top 20921 df-topon 20938 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-fil 21871 |
This theorem is referenced by: flfcntr 22068 cnextfun 22089 cnextfvval 22090 cnextf 22091 cnextcn 22092 cnextfres1 22093 cnextucn 22328 ucnextcn 22329 limcflflem 23863 rrhre 30395 |
Copyright terms: Public domain | W3C validator |