![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlreslem | Structured version Visualization version GIF version |
Description: Lemma for trlres 26828. Formerly part of proof of eupthres 27388. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
trlres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlres.d | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlres.h | ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) |
Ref | Expression |
---|---|
trlreslem | ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlres.d | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
2 | trlres.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 2 | trlf1 26826 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
5 | trlres.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
6 | elfzouz2 12698 | . . . 4 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ≥‘𝑁)) | |
7 | fzoss2 12710 | . . . 4 ⊢ ((♯‘𝐹) ∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
9 | f1ores 6313 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) | |
10 | 4, 8, 9 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) |
11 | trlres.h | . . . 4 ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) | |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ↾ (0..^𝑁))) |
13 | 11 | fveq2i 6356 | . . . . 5 ⊢ (♯‘𝐻) = (♯‘(𝐹 ↾ (0..^𝑁))) |
14 | trliswlk 26825 | . . . . . . 7 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
15 | 2 | wlkf 26741 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
16 | 1, 14, 15 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
17 | elfzofz 12699 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ (0...(♯‘𝐹))) | |
18 | 5, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝐹))) |
19 | wlkreslem0 26796 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁) | |
20 | 16, 18, 19 | syl2anc 696 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
21 | 13, 20 | syl5eq 2806 | . . . 4 ⊢ (𝜑 → (♯‘𝐻) = 𝑁) |
22 | 21 | oveq2d 6830 | . . 3 ⊢ (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁)) |
23 | wrdf 13516 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
24 | fimass 6242 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) | |
25 | 15, 23, 24 | 3syl 18 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
26 | 1, 14, 25 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
27 | ssdmres 5578 | . . . 4 ⊢ ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) | |
28 | 26, 27 | sylib 208 | . . 3 ⊢ (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) |
29 | 12, 22, 28 | f1oeq123d 6295 | . 2 ⊢ (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))) |
30 | 10, 29 | mpbird 247 | 1 ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 class class class wbr 4804 dom cdm 5266 ↾ cres 5268 “ cima 5269 ⟶wf 6045 –1-1→wf1 6046 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6814 0cc0 10148 ℤ≥cuz 11899 ...cfz 12539 ..^cfzo 12679 ♯chash 13331 Word cword 13497 Vtxcvtx 26094 iEdgciedg 26095 Walkscwlks 26723 Trailsctrls 26818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1051 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 df-hash 13332 df-word 13505 df-substr 13509 df-wlks 26726 df-trls 26820 |
This theorem is referenced by: trlres 26828 eupthres 27388 |
Copyright terms: Public domain | W3C validator |