Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnle Structured version   Visualization version   GIF version

Theorem trlnle 35994
Description: The atom not under the fiducial co-atom 𝑊 is not less than the trace of a lattice translation. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
trlne.l = (le‘𝐾)
trlne.a 𝐴 = (Atoms‘𝐾)
trlne.h 𝐻 = (LHyp‘𝐾)
trlne.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlne.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnle (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 (𝑅𝐹))

Proof of Theorem trlnle
StepHypRef Expression
1 simpl1l 1279 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ HL)
2 hlatl 35168 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
31, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐾 ∈ AtLat)
4 simpl3l 1287 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝑃𝐴)
5 trlne.l . . . . 5 = (le‘𝐾)
6 eqid 2760 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7 trlne.a . . . . 5 𝐴 = (Atoms‘𝐾)
85, 6, 7atnle0 35117 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 (0.‘𝐾))
93, 4, 8syl2anc 696 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ¬ 𝑃 (0.‘𝐾))
10 simpl1 1228 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simpl3 1232 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
12 simpl2 1230 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
13 simpr 479 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
14 trlne.h . . . . . 6 𝐻 = (LHyp‘𝐾)
15 trlne.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 trlne.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
175, 6, 7, 14, 15, 16trl0 35978 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
1810, 11, 12, 13, 17syl112anc 1481 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
1918breq2d 4816 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝑃 (𝑅𝐹) ↔ 𝑃 (0.‘𝐾)))
209, 19mtbird 314 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) = 𝑃) → ¬ 𝑃 (𝑅𝐹))
215, 7, 14, 15, 16trlne 35993 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ≠ (𝑅𝐹))
2221adantr 472 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑃 ≠ (𝑅𝐹))
23 simpl1l 1279 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ HL)
2423, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐾 ∈ AtLat)
25 simpl3l 1287 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝑃𝐴)
26 simpl1 1228 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simpl3 1232 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
28 simpl2 1230 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → 𝐹𝑇)
29 simpr 479 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑃) ≠ 𝑃)
305, 7, 14, 15, 16trlat 35977 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
3126, 27, 28, 29, 30syl112anc 1481 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝑅𝐹) ∈ 𝐴)
325, 7atncmp 35120 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴 ∧ (𝑅𝐹) ∈ 𝐴) → (¬ 𝑃 (𝑅𝐹) ↔ 𝑃 ≠ (𝑅𝐹)))
3324, 25, 31, 32syl3anc 1477 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → (¬ 𝑃 (𝑅𝐹) ↔ 𝑃 ≠ (𝑅𝐹)))
3422, 33mpbird 247 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → ¬ 𝑃 (𝑅𝐹))
3520, 34pm2.61dane 3019 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 (𝑅𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  lecple 16170  0.cp0 17258  Atomscatm 35071  AtLatcal 35072  HLchlt 35158  LHypclh 35791  LTrncltrn 35908  trLctrl 35966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-map 8027  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-lhyp 35795  df-laut 35796  df-ldil 35911  df-ltrn 35912  df-trl 35967
This theorem is referenced by:  cdlemc3  36001
  Copyright terms: Public domain W3C validator