![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlid0b | Structured version Visualization version GIF version |
Description: A lattice translation is the identity iff its trace is zero. (Contributed by NM, 14-Jun-2013.) |
Ref | Expression |
---|---|
trlid0b.b | ⊢ 𝐵 = (Base‘𝐾) |
trlid0b.z | ⊢ 0 = (0.‘𝐾) |
trlid0b.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlid0b.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlid0b.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlid0b | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅‘𝐹) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlid0b.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2771 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
3 | trlid0b.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | trlid0b.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | trlid0b.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | trlnidatb 35986 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝐹) ∈ (Atoms‘𝐾))) |
7 | trlid0b.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
8 | 7, 2, 3, 4, 5 | trlatn0 35981 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ (Atoms‘𝐾) ↔ (𝑅‘𝐹) ≠ 0 )) |
9 | 6, 8 | bitrd 268 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝐹) ≠ 0 )) |
10 | 9 | necon4bid 2988 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅‘𝐹) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 I cid 5156 ↾ cres 5251 ‘cfv 6031 Basecbs 16064 0.cp0 17245 Atomscatm 35072 HLchlt 35159 LHypclh 35792 LTrncltrn 35909 trLctrl 35967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-map 8011 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 |
This theorem is referenced by: trlnid 35988 trlcoat 36532 trlcone 36537 trljco 36549 tendoid 36582 tendoex 36784 dia0 36862 |
Copyright terms: Public domain | W3C validator |