![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcocnvat | Structured version Visualization version GIF version |
Description: Commonly used special case of trlcoat 36525. (Contributed by NM, 1-Jul-2013.) |
Ref | Expression |
---|---|
trlcoat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trlcoat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlcoat.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlcoat.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlcocnvat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘(𝐹 ∘ ◡𝐺)) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1129 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp2l 1240 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → 𝐹 ∈ 𝑇) | |
3 | simp2r 1241 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → 𝐺 ∈ 𝑇) | |
4 | trlcoat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | trlcoat.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | 4, 5 | ltrncnv 35947 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → ◡𝐺 ∈ 𝑇) |
7 | 1, 3, 6 | syl2anc 565 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → ◡𝐺 ∈ 𝑇) |
8 | simp3 1131 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘𝐹) ≠ (𝑅‘𝐺)) | |
9 | trlcoat.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
10 | 4, 5, 9 | trlcnv 35967 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘◡𝐺) = (𝑅‘𝐺)) |
11 | 1, 3, 10 | syl2anc 565 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘◡𝐺) = (𝑅‘𝐺)) |
12 | 8, 11 | neeqtrrd 3016 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘𝐹) ≠ (𝑅‘◡𝐺)) |
13 | trlcoat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
14 | 13, 4, 5, 9 | trlcoat 36525 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ◡𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘◡𝐺)) → (𝑅‘(𝐹 ∘ ◡𝐺)) ∈ 𝐴) |
15 | 1, 2, 7, 12, 14 | syl121anc 1480 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘(𝐹 ∘ ◡𝐺)) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ◡ccnv 5248 ∘ ccom 5253 ‘cfv 6031 Atomscatm 35065 HLchlt 35152 LHypclh 35785 LTrncltrn 35902 trLctrl 35960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-riotaBAD 34754 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-undef 7550 df-map 8010 df-preset 17135 df-poset 17153 df-plt 17165 df-lub 17181 df-glb 17182 df-join 17183 df-meet 17184 df-p0 17246 df-p1 17247 df-lat 17253 df-clat 17315 df-oposet 34978 df-ol 34980 df-oml 34981 df-covers 35068 df-ats 35069 df-atl 35100 df-cvlat 35124 df-hlat 35153 df-llines 35299 df-lplanes 35300 df-lvols 35301 df-lines 35302 df-psubsp 35304 df-pmap 35305 df-padd 35597 df-lhyp 35789 df-laut 35790 df-ldil 35905 df-ltrn 35906 df-trl 35961 |
This theorem is referenced by: cdlemh1 36617 cdlemk3 36635 cdlemk6 36639 cdlemk7 36650 cdlemk12 36652 cdlemkole 36655 cdlemk14 36656 cdlemk15 36657 cdlemk5u 36663 cdlemk6u 36664 cdlemk7u 36672 cdlemk12u 36674 cdlemkfid1N 36723 |
Copyright terms: Public domain | W3C validator |