![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlco | Structured version Visualization version GIF version |
Description: The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of [Crawley] p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013.) |
Ref | Expression |
---|---|
trlco.l | ⊢ ≤ = (le‘𝐾) |
trlco.j | ⊢ ∨ = (join‘𝐾) |
trlco.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlco.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlco.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlco | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlco.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | eqid 2771 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
3 | trlco.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhpexnle 35815 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝 ≤ 𝑊) |
5 | 4 | 3ad2ant1 1127 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝 ≤ 𝑊) |
6 | simpl1 1227 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | simpl2 1229 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
8 | simpl3 1231 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐺 ∈ 𝑇) | |
9 | simpr 471 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) | |
10 | trlco.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
11 | trlco.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | trlco.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
13 | eqid 2771 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
14 | 1, 10, 3, 11, 12, 13, 2 | trlcolem 36536 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
15 | 6, 7, 8, 9, 14 | syl121anc 1481 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
16 | 5, 15 | rexlimddv 3183 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 class class class wbr 4787 ∘ ccom 5254 ‘cfv 6030 (class class class)co 6796 lecple 16156 joincjn 17152 meetcmee 17153 Atomscatm 35072 HLchlt 35159 LHypclh 35793 LTrncltrn 35910 trLctrl 35968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-undef 7555 df-map 8015 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35307 df-lplanes 35308 df-lvols 35309 df-lines 35310 df-psubsp 35312 df-pmap 35313 df-padd 35605 df-lhyp 35797 df-laut 35798 df-ldil 35913 df-ltrn 35914 df-trl 35969 |
This theorem is referenced by: trlcone 36538 cdlemg46 36545 trljco 36550 tendopltp 36590 dialss 36856 diblss 36980 |
Copyright terms: Public domain | W3C validator |