![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trgtmd | Structured version Visualization version GIF version |
Description: The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
trgtmd | ⊢ (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrg.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | 1 | istrg 22187 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) |
3 | 2 | simp3bi 1141 | 1 ⊢ (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 mulGrpcmgp 18697 Ringcrg 18755 TopMndctmd 22094 TopGrpctgp 22095 TopRingctrg 22179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5993 df-fv 6038 df-trg 22183 |
This theorem is referenced by: mulrcn 22202 cnmpt1mulr 22205 cnmpt2mulr 22206 nrgtdrg 22717 iistmd 30288 |
Copyright terms: Public domain | W3C validator |