![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trfil3 | Structured version Visualization version GIF version |
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
trfil3 | ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trfil2 21913 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅)) | |
2 | dfral2 3133 | . . 3 ⊢ (∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ ∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅) | |
3 | nne 2937 | . . . . . . . 8 ⊢ (¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ (𝑣 ∩ 𝐴) = ∅) | |
4 | filelss 21878 | . . . . . . . . 9 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → 𝑣 ⊆ 𝑌) | |
5 | reldisj 4164 | . . . . . . . . 9 ⊢ (𝑣 ⊆ 𝑌 → ((𝑣 ∩ 𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → ((𝑣 ∩ 𝐴) = ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
7 | 3, 6 | syl5bb 272 | . . . . . . 7 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑣 ∈ 𝐿) → (¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
8 | 7 | rexbidva 3188 | . . . . . 6 ⊢ (𝐿 ∈ (Fil‘𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
9 | 8 | adantr 472 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
10 | difssd 3882 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑌 → (𝑌 ∖ 𝐴) ⊆ 𝑌) | |
11 | elfilss 21902 | . . . . . 6 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑌 ∖ 𝐴) ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ 𝐿 ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) | |
12 | 10, 11 | sylan2 492 | . . . . 5 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ 𝐿 ↔ ∃𝑣 ∈ 𝐿 𝑣 ⊆ (𝑌 ∖ 𝐴))) |
13 | 9, 12 | bitr4d 271 | . . . 4 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
14 | 13 | notbid 307 | . . 3 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (¬ ∃𝑣 ∈ 𝐿 ¬ (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
15 | 2, 14 | syl5bb 272 | . 2 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → (∀𝑣 ∈ 𝐿 (𝑣 ∩ 𝐴) ≠ ∅ ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
16 | 1, 15 | bitrd 268 | 1 ⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝐿 ↾t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌 ∖ 𝐴) ∈ 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ∀wral 3051 ∃wrex 3052 ∖ cdif 3713 ∩ cin 3715 ⊆ wss 3716 ∅c0 4059 ‘cfv 6050 (class class class)co 6815 ↾t crest 16304 Filcfil 21871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-1st 7335 df-2nd 7336 df-rest 16306 df-fbas 19966 df-fg 19967 df-fil 21872 |
This theorem is referenced by: fgtr 21916 trufil 21936 flimrest 22009 fclsrest 22050 cfilres 23315 relcmpcmet 23336 |
Copyright terms: Public domain | W3C validator |