MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfg Structured version   Visualization version   GIF version

Theorem trfg 21896
Description: The trace operation and the filGen operation are inverses to one another in some sense, with filGen growing the base set and t shrinking it. See fgtr 21895 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
trfg ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹)

Proof of Theorem trfg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 21853 . . . . . . 7 (𝐹 ∈ (Fil‘𝐴) → 𝐹 ∈ (fBas‘𝐴))
213ad2ant1 1128 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝐴))
3 filsspw 21856 . . . . . . . 8 (𝐹 ∈ (Fil‘𝐴) → 𝐹 ⊆ 𝒫 𝐴)
433ad2ant1 1128 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ 𝒫 𝐴)
5 simp2 1132 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐴𝑋)
6 sspwb 5066 . . . . . . . 8 (𝐴𝑋 ↔ 𝒫 𝐴 ⊆ 𝒫 𝑋)
75, 6sylib 208 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
84, 7sstrd 3754 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ 𝒫 𝑋)
9 simp3 1133 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝑋𝑉)
10 fbasweak 21870 . . . . . 6 ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝑋))
112, 8, 9, 10syl3anc 1477 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝑋))
12 fgcl 21883 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
1311, 12syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
14 filtop 21860 . . . . 5 (𝐹 ∈ (Fil‘𝐴) → 𝐴𝐹)
15143ad2ant1 1128 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐴𝐹)
16 restval 16289 . . . 4 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)))
1713, 15, 16syl2anc 696 . . 3 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)))
18 elfg 21876 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥𝑋 ∧ ∃𝑦𝐹 𝑦𝑥)))
1911, 18syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥𝑋 ∧ ∃𝑦𝐹 𝑦𝑥)))
2019simplbda 655 . . . . . 6 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦𝐹 𝑦𝑥)
21 simpll1 1255 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝐹 ∈ (Fil‘𝐴))
22 simprl 811 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝐹)
23 inss2 3977 . . . . . . . 8 (𝑥𝐴) ⊆ 𝐴
2423a1i 11 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → (𝑥𝐴) ⊆ 𝐴)
25 simprr 813 . . . . . . . 8 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝑥)
26 filelss 21857 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑦𝐹) → 𝑦𝐴)
27263ad2antl1 1201 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑦𝐹) → 𝑦𝐴)
2827ad2ant2r 800 . . . . . . . 8 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝐴)
2925, 28ssind 3980 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦 ⊆ (𝑥𝐴))
30 filss 21858 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ (𝑦𝐹 ∧ (𝑥𝐴) ⊆ 𝐴𝑦 ⊆ (𝑥𝐴))) → (𝑥𝐴) ∈ 𝐹)
3121, 22, 24, 29, 30syl13anc 1479 . . . . . 6 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → (𝑥𝐴) ∈ 𝐹)
3220, 31rexlimddv 3173 . . . . 5 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥𝐴) ∈ 𝐹)
33 eqid 2760 . . . . 5 (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)) = (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴))
3432, 33fmptd 6548 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)):(𝑋filGen𝐹)⟶𝐹)
35 frn 6214 . . . 4 ((𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)):(𝑋filGen𝐹)⟶𝐹 → ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)) ⊆ 𝐹)
3634, 35syl 17 . . 3 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)) ⊆ 𝐹)
3717, 36eqsstrd 3780 . 2 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) ⊆ 𝐹)
38 filelss 21857 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑥𝐹) → 𝑥𝐴)
39383ad2antl1 1201 . . . . . 6 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥𝐴)
40 df-ss 3729 . . . . . 6 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
4139, 40sylib 208 . . . . 5 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑥𝐴) = 𝑥)
4213adantr 472 . . . . . 6 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
4315adantr 472 . . . . . 6 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝐴𝐹)
44 ssfg 21877 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
4511, 44syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ (𝑋filGen𝐹))
4645sselda 3744 . . . . . 6 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥 ∈ (𝑋filGen𝐹))
47 elrestr 16291 . . . . . 6 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝑥 ∈ (𝑋filGen𝐹)) → (𝑥𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4842, 43, 46, 47syl3anc 1477 . . . . 5 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑥𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4941, 48eqeltrrd 2840 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥 ∈ ((𝑋filGen𝐹) ↾t 𝐴))
5049ex 449 . . 3 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑥𝐹𝑥 ∈ ((𝑋filGen𝐹) ↾t 𝐴)))
5150ssrdv 3750 . 2 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ ((𝑋filGen𝐹) ↾t 𝐴))
5237, 51eqssd 3761 1 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wrex 3051  cin 3714  wss 3715  𝒫 cpw 4302  cmpt 4881  ran crn 5267  wf 6045  cfv 6049  (class class class)co 6813  t crest 16283  fBascfbas 19936  filGencfg 19937  Filcfil 21850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-rest 16285  df-fbas 19945  df-fg 19946  df-fil 21851
This theorem is referenced by:  cmetss  23313  minveclem4a  23401
  Copyright terms: Public domain W3C validator