![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trel | Structured version Visualization version GIF version |
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
trel | ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 4904 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) | |
2 | eleq12 2827 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑦 ∈ 𝑥 ↔ 𝐵 ∈ 𝐶)) | |
3 | eleq1 2825 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
4 | 3 | adantl 473 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
5 | 2, 4 | anbi12d 749 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
6 | eleq1 2825 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
7 | 6 | adantr 472 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
8 | 5, 7 | imbi12d 333 | . . . 4 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴))) |
9 | 8 | spc2gv 3434 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴))) |
10 | 9 | pm2.43b 55 | . 2 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
11 | 1, 10 | sylbi 207 | 1 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1628 = wceq 1630 ∈ wcel 2137 Tr wtr 4902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-v 3340 df-in 3720 df-ss 3727 df-uni 4587 df-tr 4903 |
This theorem is referenced by: trel3 4910 trintssOLD 4920 ordn2lp 5902 ordelord 5904 tz7.7 5908 ordtr1 5926 suctr 5967 suctrOLD 5968 trsuc 5969 ordom 7237 elnn 7238 epfrs 8778 tcrank 8918 dfon2lem6 31996 tratrb 39246 truniALT 39251 onfrALTlem2 39261 trelded 39281 pwtrrVD 39557 suctrALT 39558 suctrALT2VD 39568 suctrALT2 39569 tratrbVD 39594 truniALTVD 39611 trintALTVD 39613 trintALT 39614 onfrALTlem2VD 39622 suctrALTcf 39655 suctrALTcfVD 39656 |
Copyright terms: Public domain | W3C validator |