Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclubgNEW Structured version   Visualization version   GIF version

Theorem trclubgNEW 38427
Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
trclubgNEW.rex (𝜑𝑅 ∈ V)
Assertion
Ref Expression
trclubgNEW (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem trclubgNEW
StepHypRef Expression
1 trclubgNEW.rex . . 3 (𝜑𝑅 ∈ V)
2 dmexg 7262 . . . . 5 (𝑅 ∈ V → dom 𝑅 ∈ V)
31, 2syl 17 . . . 4 (𝜑 → dom 𝑅 ∈ V)
4 rnexg 7263 . . . . 5 (𝑅 ∈ V → ran 𝑅 ∈ V)
51, 4syl 17 . . . 4 (𝜑 → ran 𝑅 ∈ V)
6 xpexg 7125 . . . 4 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 × ran 𝑅) ∈ V)
73, 5, 6syl2anc 696 . . 3 (𝜑 → (dom 𝑅 × ran 𝑅) ∈ V)
8 unexg 7124 . . 3 ((𝑅 ∈ V ∧ (dom 𝑅 × ran 𝑅) ∈ V) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
91, 7, 8syl2anc 696 . 2 (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
10 id 22 . . . 4 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → 𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
1110, 10coeq12d 5442 . . 3 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → (𝑥𝑥) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1211, 10sseq12d 3775 . 2 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ((𝑥𝑥) ⊆ 𝑥 ↔ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
13 ssun1 3919 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
1413a1i 11 . 2 (𝜑𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
15 cnvssrndm 5818 . . 3 𝑅 ⊆ (ran 𝑅 × dom 𝑅)
16 coundi 5797 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
17 cnvss 5450 . . . . . . . 8 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → 𝑅(ran 𝑅 × dom 𝑅))
18 coss2 5434 . . . . . . . 8 (𝑅(ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)))
1917, 18syl 17 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)))
20 cocnvcnv2 5808 . . . . . . 7 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅)
21 cnvxp 5709 . . . . . . . 8 (ran 𝑅 × dom 𝑅) = (dom 𝑅 × ran 𝑅)
2221coeq2i 5438 . . . . . . 7 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (ran 𝑅 × dom 𝑅)) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))
2319, 20, 223sstr3g 3786 . . . . . 6 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
24 ssequn1 3926 . . . . . 6 (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ⊆ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
2523, 24sylib 208 . . . . 5 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)))
26 coundir 5798 . . . . . 6 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) = ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
27 coss1 5433 . . . . . . . . . 10 (𝑅(ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2817, 27syl 17 . . . . . . . . 9 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
29 cocnvcnv1 5807 . . . . . . . . 9 (𝑅 ∘ (dom 𝑅 × ran 𝑅)) = (𝑅 ∘ (dom 𝑅 × ran 𝑅))
3021coeq1i 5437 . . . . . . . . 9 ((ran 𝑅 × dom 𝑅) ∘ (dom 𝑅 × ran 𝑅)) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3128, 29, 303sstr3g 3786 . . . . . . . 8 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
32 ssequn1 3926 . . . . . . . 8 ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3331, 32sylib 208 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
34 xptrrel 13920 . . . . . . . . 9 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
35 ssun2 3920 . . . . . . . . 9 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3634, 35sstri 3753 . . . . . . . 8 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3736a1i 11 . . . . . . 7 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3833, 37eqsstrd 3780 . . . . . 6 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∘ (dom 𝑅 × ran 𝑅)) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3926, 38syl5eqss 3790 . . . . 5 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4025, 39eqsstrd 3780 . . . 4 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → (((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ 𝑅) ∪ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4116, 40syl5eqss 3790 . . 3 (𝑅 ⊆ (ran 𝑅 × dom 𝑅) → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4215, 41mp1i 13 . 2 (𝜑 → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
439, 12, 14, 42clublem 38419 1 (𝜑 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {cab 2746  Vcvv 3340  cun 3713  wss 3715   cint 4627   × cxp 5264  ccnv 5265  dom cdm 5266  ran crn 5267  ccom 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278
This theorem is referenced by:  trclubNEW  38428
  Copyright terms: Public domain W3C validator