![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trclubNEW | Structured version Visualization version GIF version |
Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
Ref | Expression |
---|---|
trclubNEW.rex | ⊢ (𝜑 → 𝑅 ∈ V) |
trclubNEW.rel | ⊢ (𝜑 → Rel 𝑅) |
Ref | Expression |
---|---|
trclubNEW | ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclubNEW.rex | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | trclubgNEW 38242 | . 2 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
3 | trclubNEW.rel | . . . 4 ⊢ (𝜑 → Rel 𝑅) | |
4 | relssdmrn 5694 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
6 | ssequn1 3816 | . . 3 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
7 | 5, 6 | sylib 208 | . 2 ⊢ (𝜑 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
8 | 2, 7 | sseqtrd 3674 | 1 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 Vcvv 3231 ∪ cun 3605 ⊆ wss 3607 ∩ cint 4507 × cxp 5141 dom cdm 5143 ran crn 5144 ∘ ccom 5147 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |