![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trclfvlb | Structured version Visualization version GIF version |
Description: The transitive closure of a relation has a lower bound. (Contributed by RP, 28-Apr-2020.) |
Ref | Expression |
---|---|
trclfvlb | ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssmin 4648 | . 2 ⊢ 𝑅 ⊆ ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | |
2 | trclfv 13960 | . 2 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | |
3 | 1, 2 | syl5sseqr 3795 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 {cab 2746 ⊆ wss 3715 ∩ cint 4627 ∘ ccom 5270 ‘cfv 6049 t+ctcl 13945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-iota 6012 df-fun 6051 df-fv 6057 df-trcl 13947 |
This theorem is referenced by: trclfvlb2 13970 trclfvlb3 13971 cotrtrclfv 13972 trclfvg 13975 dmtrclfv 13978 rntrclfvOAI 37774 brtrclfv2 38539 frege96d 38561 frege91d 38563 frege97d 38564 frege109d 38569 frege131d 38576 |
Copyright terms: Public domain | W3C validator |