![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trclexlem | Structured version Visualization version GIF version |
Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 5-May-2020.) |
Ref | Expression |
---|---|
trclexlem | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7214 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
2 | rnexg 7215 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
3 | xpexg 7077 | . . 3 ⊢ ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 × ran 𝑅) ∈ V) | |
4 | 1, 2, 3 | syl2anc 696 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 × ran 𝑅) ∈ V) |
5 | unexg 7076 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (dom 𝑅 × ran 𝑅) ∈ V) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) | |
6 | 4, 5 | mpdan 705 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 Vcvv 3304 ∪ cun 3678 × cxp 5216 dom cdm 5218 ran crn 5219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-xp 5224 df-rel 5225 df-cnv 5226 df-dm 5228 df-rn 5229 |
This theorem is referenced by: trclublem 13856 trclfv 13861 cnvtrcl0 38352 |
Copyright terms: Public domain | W3C validator |