![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trcleq2lem | Structured version Visualization version GIF version |
Description: Equality implies bijection. (Contributed by RP, 5-May-2020.) |
Ref | Expression |
---|---|
trcleq2lem | ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3768 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 ⊆ 𝐴 ↔ 𝑅 ⊆ 𝐵)) | |
2 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 2, 2 | coeq12d 5442 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐴) = (𝐵 ∘ 𝐵)) |
4 | 3, 2 | sseq12d 3775 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∘ 𝐴) ⊆ 𝐴 ↔ (𝐵 ∘ 𝐵) ⊆ 𝐵)) |
5 | 1, 4 | anbi12d 749 | 1 ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ⊆ wss 3715 ∘ ccom 5270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-in 3722 df-ss 3729 df-br 4805 df-opab 4865 df-co 5275 |
This theorem is referenced by: cvbtrcl 13952 trcleq12lem 13953 trclublem 13955 cotrtrclfv 13972 trclun 13974 trclexi 38447 dftrcl3 38532 |
Copyright terms: Public domain | W3C validator |