![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trcleq12lem | Structured version Visualization version GIF version |
Description: Equality implies bijection. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
trcleq12lem | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleq1lem 13930 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴))) | |
2 | trcleq2lem 13939 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑆 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | |
3 | 1, 2 | sylan9bb 493 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ⊆ wss 3721 ∘ ccom 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-in 3728 df-ss 3735 df-br 4785 df-opab 4845 df-co 5258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |