MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcl Structured version   Visualization version   GIF version

Theorem trcl 8589
Description: For any set 𝐴, show the properties of its transitive closure 𝐶. Similar to Theorem 9.1 of [TakeutiZaring] p. 73 except that we show an explicit expression for the transitive closure rather than just its existence. See tz9.1 8590 for an abbreviated version showing existence. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
trcl.1 𝐴 ∈ V
trcl.2 𝐹 = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)
trcl.3 𝐶 = 𝑦 ∈ ω (𝐹𝑦)
Assertion
Ref Expression
trcl (𝐴𝐶 ∧ Tr 𝐶 ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐶𝑥))
Distinct variable groups:   𝑥,𝑧   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐹(𝑧)

Proof of Theorem trcl
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7070 . . . . 5 ∅ ∈ ω
2 trcl.2 . . . . . . . 8 𝐹 = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)
32fveq1i 6179 . . . . . . 7 (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘∅)
4 trcl.1 . . . . . . . 8 𝐴 ∈ V
5 fr0g 7516 . . . . . . . 8 (𝐴 ∈ V → ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘∅) = 𝐴)
64, 5ax-mp 5 . . . . . . 7 ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘∅) = 𝐴
73, 6eqtr2i 2643 . . . . . 6 𝐴 = (𝐹‘∅)
87eqimssi 3651 . . . . 5 𝐴 ⊆ (𝐹‘∅)
9 fveq2 6178 . . . . . . 7 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
109sseq2d 3625 . . . . . 6 (𝑦 = ∅ → (𝐴 ⊆ (𝐹𝑦) ↔ 𝐴 ⊆ (𝐹‘∅)))
1110rspcev 3304 . . . . 5 ((∅ ∈ ω ∧ 𝐴 ⊆ (𝐹‘∅)) → ∃𝑦 ∈ ω 𝐴 ⊆ (𝐹𝑦))
121, 8, 11mp2an 707 . . . 4 𝑦 ∈ ω 𝐴 ⊆ (𝐹𝑦)
13 ssiun 4553 . . . 4 (∃𝑦 ∈ ω 𝐴 ⊆ (𝐹𝑦) → 𝐴 𝑦 ∈ ω (𝐹𝑦))
1412, 13ax-mp 5 . . 3 𝐴 𝑦 ∈ ω (𝐹𝑦)
15 trcl.3 . . 3 𝐶 = 𝑦 ∈ ω (𝐹𝑦)
1614, 15sseqtr4i 3630 . 2 𝐴𝐶
17 dftr2 4745 . . . 4 (Tr 𝑦 ∈ ω (𝐹𝑦) ↔ ∀𝑣𝑢((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) → 𝑣 𝑦 ∈ ω (𝐹𝑦)))
18 eliun 4515 . . . . . . . . 9 (𝑢 𝑦 ∈ ω (𝐹𝑦) ↔ ∃𝑦 ∈ ω 𝑢 ∈ (𝐹𝑦))
1918anbi2i 729 . . . . . . . 8 ((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) ↔ (𝑣𝑢 ∧ ∃𝑦 ∈ ω 𝑢 ∈ (𝐹𝑦)))
20 r19.42v 3087 . . . . . . . 8 (∃𝑦 ∈ ω (𝑣𝑢𝑢 ∈ (𝐹𝑦)) ↔ (𝑣𝑢 ∧ ∃𝑦 ∈ ω 𝑢 ∈ (𝐹𝑦)))
2119, 20bitr4i 267 . . . . . . 7 ((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) ↔ ∃𝑦 ∈ ω (𝑣𝑢𝑢 ∈ (𝐹𝑦)))
22 elunii 4432 . . . . . . . . 9 ((𝑣𝑢𝑢 ∈ (𝐹𝑦)) → 𝑣 (𝐹𝑦))
23 ssun2 3769 . . . . . . . . . . 11 (𝐹𝑦) ⊆ ((𝐹𝑦) ∪ (𝐹𝑦))
24 fvex 6188 . . . . . . . . . . . . 13 (𝐹𝑦) ∈ V
2524uniex 6938 . . . . . . . . . . . . 13 (𝐹𝑦) ∈ V
2624, 25unex 6941 . . . . . . . . . . . 12 ((𝐹𝑦) ∪ (𝐹𝑦)) ∈ V
27 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑧𝑥 = 𝑧)
28 unieq 4435 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 𝑥 = 𝑧)
2927, 28uneq12d 3760 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 𝑥) = (𝑧 𝑧))
30 id 22 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → 𝑥 = (𝐹𝑦))
31 unieq 4435 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → 𝑥 = (𝐹𝑦))
3230, 31uneq12d 3760 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → (𝑥 𝑥) = ((𝐹𝑦) ∪ (𝐹𝑦)))
332, 29, 32frsucmpt2 7520 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ((𝐹𝑦) ∪ (𝐹𝑦)) ∈ V) → (𝐹‘suc 𝑦) = ((𝐹𝑦) ∪ (𝐹𝑦)))
3426, 33mpan2 706 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = ((𝐹𝑦) ∪ (𝐹𝑦)))
3523, 34syl5sseqr 3646 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐹𝑦) ⊆ (𝐹‘suc 𝑦))
3635sseld 3594 . . . . . . . . 9 (𝑦 ∈ ω → (𝑣 (𝐹𝑦) → 𝑣 ∈ (𝐹‘suc 𝑦)))
3722, 36syl5 34 . . . . . . . 8 (𝑦 ∈ ω → ((𝑣𝑢𝑢 ∈ (𝐹𝑦)) → 𝑣 ∈ (𝐹‘suc 𝑦)))
3837reximia 3006 . . . . . . 7 (∃𝑦 ∈ ω (𝑣𝑢𝑢 ∈ (𝐹𝑦)) → ∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦))
3921, 38sylbi 207 . . . . . 6 ((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) → ∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦))
40 peano2 7071 . . . . . . . . . 10 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
41 fveq2 6178 . . . . . . . . . . . . 13 (𝑢 = suc 𝑦 → (𝐹𝑢) = (𝐹‘suc 𝑦))
4241eleq2d 2685 . . . . . . . . . . . 12 (𝑢 = suc 𝑦 → (𝑣 ∈ (𝐹𝑢) ↔ 𝑣 ∈ (𝐹‘suc 𝑦)))
4342rspcev 3304 . . . . . . . . . . 11 ((suc 𝑦 ∈ ω ∧ 𝑣 ∈ (𝐹‘suc 𝑦)) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢))
4443ex 450 . . . . . . . . . 10 (suc 𝑦 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢)))
4540, 44syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢)))
4645rexlimiv 3023 . . . . . . . 8 (∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢))
47 fveq2 6178 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
4847eleq2d 2685 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑣 ∈ (𝐹𝑦) ↔ 𝑣 ∈ (𝐹𝑢)))
4948cbvrexv 3167 . . . . . . . 8 (∃𝑦 ∈ ω 𝑣 ∈ (𝐹𝑦) ↔ ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢))
5046, 49sylibr 224 . . . . . . 7 (∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑦 ∈ ω 𝑣 ∈ (𝐹𝑦))
51 eliun 4515 . . . . . . 7 (𝑣 𝑦 ∈ ω (𝐹𝑦) ↔ ∃𝑦 ∈ ω 𝑣 ∈ (𝐹𝑦))
5250, 51sylibr 224 . . . . . 6 (∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦) → 𝑣 𝑦 ∈ ω (𝐹𝑦))
5339, 52syl 17 . . . . 5 ((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) → 𝑣 𝑦 ∈ ω (𝐹𝑦))
5453ax-gen 1720 . . . 4 𝑢((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) → 𝑣 𝑦 ∈ ω (𝐹𝑦))
5517, 54mpgbir 1724 . . 3 Tr 𝑦 ∈ ω (𝐹𝑦)
56 treq 4749 . . . 4 (𝐶 = 𝑦 ∈ ω (𝐹𝑦) → (Tr 𝐶 ↔ Tr 𝑦 ∈ ω (𝐹𝑦)))
5715, 56ax-mp 5 . . 3 (Tr 𝐶 ↔ Tr 𝑦 ∈ ω (𝐹𝑦))
5855, 57mpbir 221 . 2 Tr 𝐶
59 fveq2 6178 . . . . . . . 8 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
6059sseq1d 3624 . . . . . . 7 (𝑣 = ∅ → ((𝐹𝑣) ⊆ 𝑥 ↔ (𝐹‘∅) ⊆ 𝑥))
61 fveq2 6178 . . . . . . . 8 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
6261sseq1d 3624 . . . . . . 7 (𝑣 = 𝑦 → ((𝐹𝑣) ⊆ 𝑥 ↔ (𝐹𝑦) ⊆ 𝑥))
63 fveq2 6178 . . . . . . . 8 (𝑣 = suc 𝑦 → (𝐹𝑣) = (𝐹‘suc 𝑦))
6463sseq1d 3624 . . . . . . 7 (𝑣 = suc 𝑦 → ((𝐹𝑣) ⊆ 𝑥 ↔ (𝐹‘suc 𝑦) ⊆ 𝑥))
653, 6eqtri 2642 . . . . . . . . . 10 (𝐹‘∅) = 𝐴
6665sseq1i 3621 . . . . . . . . 9 ((𝐹‘∅) ⊆ 𝑥𝐴𝑥)
6766biimpri 218 . . . . . . . 8 (𝐴𝑥 → (𝐹‘∅) ⊆ 𝑥)
6867adantr 481 . . . . . . 7 ((𝐴𝑥 ∧ Tr 𝑥) → (𝐹‘∅) ⊆ 𝑥)
69 uniss 4449 . . . . . . . . . . . . 13 ((𝐹𝑦) ⊆ 𝑥 (𝐹𝑦) ⊆ 𝑥)
70 df-tr 4744 . . . . . . . . . . . . . 14 (Tr 𝑥 𝑥𝑥)
71 sstr2 3602 . . . . . . . . . . . . . 14 ( (𝐹𝑦) ⊆ 𝑥 → ( 𝑥𝑥 (𝐹𝑦) ⊆ 𝑥))
7270, 71syl5bi 232 . . . . . . . . . . . . 13 ( (𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 (𝐹𝑦) ⊆ 𝑥))
7369, 72syl 17 . . . . . . . . . . . 12 ((𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 (𝐹𝑦) ⊆ 𝑥))
7473anc2li 579 . . . . . . . . . . 11 ((𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 → ((𝐹𝑦) ⊆ 𝑥 (𝐹𝑦) ⊆ 𝑥)))
75 unss 3779 . . . . . . . . . . 11 (((𝐹𝑦) ⊆ 𝑥 (𝐹𝑦) ⊆ 𝑥) ↔ ((𝐹𝑦) ∪ (𝐹𝑦)) ⊆ 𝑥)
7674, 75syl6ib 241 . . . . . . . . . 10 ((𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 → ((𝐹𝑦) ∪ (𝐹𝑦)) ⊆ 𝑥))
7734sseq1d 3624 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐹‘suc 𝑦) ⊆ 𝑥 ↔ ((𝐹𝑦) ∪ (𝐹𝑦)) ⊆ 𝑥))
7877biimprd 238 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐹𝑦) ∪ (𝐹𝑦)) ⊆ 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥))
7976, 78syl9r 78 . . . . . . . . 9 (𝑦 ∈ ω → ((𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥)))
8079com23 86 . . . . . . . 8 (𝑦 ∈ ω → (Tr 𝑥 → ((𝐹𝑦) ⊆ 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥)))
8180adantld 483 . . . . . . 7 (𝑦 ∈ ω → ((𝐴𝑥 ∧ Tr 𝑥) → ((𝐹𝑦) ⊆ 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥)))
8260, 62, 64, 68, 81finds2 7079 . . . . . 6 (𝑣 ∈ ω → ((𝐴𝑥 ∧ Tr 𝑥) → (𝐹𝑣) ⊆ 𝑥))
8382com12 32 . . . . 5 ((𝐴𝑥 ∧ Tr 𝑥) → (𝑣 ∈ ω → (𝐹𝑣) ⊆ 𝑥))
8483ralrimiv 2962 . . . 4 ((𝐴𝑥 ∧ Tr 𝑥) → ∀𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥)
85 fveq2 6178 . . . . . . . 8 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
8685cbviunv 4550 . . . . . . 7 𝑦 ∈ ω (𝐹𝑦) = 𝑣 ∈ ω (𝐹𝑣)
8715, 86eqtri 2642 . . . . . 6 𝐶 = 𝑣 ∈ ω (𝐹𝑣)
8887sseq1i 3621 . . . . 5 (𝐶𝑥 𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥)
89 iunss 4552 . . . . 5 ( 𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥 ↔ ∀𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥)
9088, 89bitri 264 . . . 4 (𝐶𝑥 ↔ ∀𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥)
9184, 90sylibr 224 . . 3 ((𝐴𝑥 ∧ Tr 𝑥) → 𝐶𝑥)
9291ax-gen 1720 . 2 𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐶𝑥)
9316, 58, 923pm3.2i 1237 1 (𝐴𝐶 ∧ Tr 𝐶 ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐶𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wal 1479   = wceq 1481  wcel 1988  wral 2909  wrex 2910  Vcvv 3195  cun 3565  wss 3567  c0 3907   cuni 4427   ciun 4511  cmpt 4720  Tr wtr 4743  cres 5106  suc csuc 5713  cfv 5876  ωcom 7050  reccrdg 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491
This theorem is referenced by:  tz9.1  8590  tz9.1c  8591
  Copyright terms: Public domain W3C validator