![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpss | Structured version Visualization version GIF version |
Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpss.1 | ⊢ 𝐴 ∈ V |
tpss.2 | ⊢ 𝐵 ∈ V |
tpss.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
tpss | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3820 | . 2 ⊢ (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) | |
2 | df-3an 1056 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ 𝐷)) | |
3 | tpss.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | tpss.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | prss 4383 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷) |
6 | tpss.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
7 | 6 | snss 4348 | . . . 4 ⊢ (𝐶 ∈ 𝐷 ↔ {𝐶} ⊆ 𝐷) |
8 | 5, 7 | anbi12i 733 | . . 3 ⊢ (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ 𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷)) |
9 | 2, 8 | bitri 264 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷)) |
10 | df-tp 4215 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
11 | 10 | sseq1i 3662 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) |
12 | 1, 9, 11 | 3bitr4i 292 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1054 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ⊆ wss 3607 {csn 4210 {cpr 4212 {ctp 4214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-in 3614 df-ss 3621 df-sn 4211 df-pr 4213 df-tp 4215 |
This theorem is referenced by: 1cubr 24614 konigsberglem4 27233 rabren3dioph 37696 fourierdlem102 40743 fourierdlem114 40755 nnsum4primesodd 42009 nnsum4primesoddALTV 42010 |
Copyright terms: Public domain | W3C validator |