Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tprot Structured version   Visualization version   GIF version

Theorem tprot 4316
 Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tprot {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}

Proof of Theorem tprot
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3orrot 1061 . . 3 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) ↔ (𝑥 = 𝐵𝑥 = 𝐶𝑥 = 𝐴))
21abbii 2768 . 2 {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)} = {𝑥 ∣ (𝑥 = 𝐵𝑥 = 𝐶𝑥 = 𝐴)}
3 dftp2 4263 . 2 {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)}
4 dftp2 4263 . 2 {𝐵, 𝐶, 𝐴} = {𝑥 ∣ (𝑥 = 𝐵𝑥 = 𝐶𝑥 = 𝐴)}
52, 3, 43eqtr4i 2683 1 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
 Colors of variables: wff setvar class Syntax hints:   ∨ w3o 1053   = wceq 1523  {cab 2637  {ctp 4214 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-un 3612  df-sn 4211  df-pr 4213  df-tp 4215 This theorem is referenced by:  tpcomb  4318  tpass  4319  tpidm13  4323  tpidm23  4324  tpnzd  4345  tpprceq3  4367  fvtp2  6502  fvtp3  6503  fvtp2g  6505  fvtp3g  6506  f13dfv  6570  en3lplem2  8550  estrres  16826  nb3grprlem2  26327  nb3grpr  26328  nb3grpr2  26329  nb3gr2nb  26330  cplgr3v  26387  frgr3v  27255  1to3vfriswmgr  27260  dvh4dimN  37053  en3lplem2VD  39393
 Copyright terms: Public domain W3C validator