MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfo Structured version   Visualization version   GIF version

Theorem tposfo 7550
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)

Proof of Theorem tposfo
StepHypRef Expression
1 relxp 5284 . . 3 Rel (𝐴 × 𝐵)
2 tposfo2 7546 . . 3 (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–onto𝐶))
31, 2ax-mp 5 . 2 (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–onto𝐶)
4 cnvxp 5710 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
5 foeq2 6275 . . 3 ((𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto𝐶))
64, 5ax-mp 5 . 2 (tpos 𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)
73, 6sylib 208 1 (𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632   × cxp 5265  ccnv 5266  Rel wrel 5272  ontowfo 6048  tpos ctpos 7522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-fo 6056  df-fv 6058  df-tpos 7523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator