![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposfn2 | Structured version Visualization version GIF version |
Description: The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposfn2 | ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposfun 7413 | . . . 4 ⊢ (Fun 𝐹 → Fun tpos 𝐹) | |
2 | 1 | a1i 11 | . . 3 ⊢ (Rel 𝐴 → (Fun 𝐹 → Fun tpos 𝐹)) |
3 | dmtpos 7409 | . . . . . 6 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹)) |
5 | releq 5235 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴)) | |
6 | cnveq 5328 | . . . . . 6 ⊢ (dom 𝐹 = 𝐴 → ◡dom 𝐹 = ◡𝐴) | |
7 | 6 | eqeq2d 2661 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (dom tpos 𝐹 = ◡dom 𝐹 ↔ dom tpos 𝐹 = ◡𝐴)) |
8 | 4, 5, 7 | 3imtr3d 282 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Rel 𝐴 → dom tpos 𝐹 = ◡𝐴)) |
9 | 8 | com12 32 | . . 3 ⊢ (Rel 𝐴 → (dom 𝐹 = 𝐴 → dom tpos 𝐹 = ◡𝐴)) |
10 | 2, 9 | anim12d 585 | . 2 ⊢ (Rel 𝐴 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (Fun tpos 𝐹 ∧ dom tpos 𝐹 = ◡𝐴))) |
11 | df-fn 5929 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
12 | df-fn 5929 | . 2 ⊢ (tpos 𝐹 Fn ◡𝐴 ↔ (Fun tpos 𝐹 ∧ dom tpos 𝐹 = ◡𝐴)) | |
13 | 10, 11, 12 | 3imtr4g 285 | 1 ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ◡ccnv 5142 dom cdm 5143 Rel wrel 5148 Fun wfun 5920 Fn wfn 5921 tpos ctpos 7396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 df-tpos 7397 |
This theorem is referenced by: tposfo2 7420 tpos0 7427 |
Copyright terms: Public domain | W3C validator |