![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposf2 | Structured version Visualization version GIF version |
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf2 | ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6185 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | dffn4 6262 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
3 | 1, 2 | sylib 208 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→ran 𝐹) |
4 | tposfo2 7527 | . . . . . 6 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴–onto→ran 𝐹)) | |
5 | 3, 4 | syl5 34 | . . . . 5 ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴–onto→ran 𝐹)) |
6 | 5 | imp 393 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴–onto→ran 𝐹) |
7 | fof 6256 | . . . 4 ⊢ (tpos 𝐹:◡𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴⟶ran 𝐹) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶ran 𝐹) |
9 | frn 6193 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
10 | 9 | adantl 467 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → ran 𝐹 ⊆ 𝐵) |
11 | 8, 10 | fssd 6197 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶𝐵) |
12 | 11 | ex 397 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ⊆ wss 3723 ◡ccnv 5248 ran crn 5250 Rel wrel 5254 Fn wfn 6026 ⟶wf 6027 –onto→wfo 6029 tpos ctpos 7503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fo 6037 df-fv 6039 df-tpos 7504 |
This theorem is referenced by: tposf 7532 |
Copyright terms: Public domain | W3C validator |