![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposexg | Structured version Visualization version GIF version |
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposexg | ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposssxp 7507 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
2 | dmexg 7243 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
3 | cnvexg 7258 | . . . . 5 ⊢ (dom 𝐹 ∈ V → ◡dom 𝐹 ∈ V) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ◡dom 𝐹 ∈ V) |
5 | p0ex 4981 | . . . 4 ⊢ {∅} ∈ V | |
6 | unexg 7105 | . . . 4 ⊢ ((◡dom 𝐹 ∈ V ∧ {∅} ∈ V) → (◡dom 𝐹 ∪ {∅}) ∈ V) | |
7 | 4, 5, 6 | sylancl 566 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (◡dom 𝐹 ∪ {∅}) ∈ V) |
8 | rnexg 7244 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
9 | xpexg 7106 | . . 3 ⊢ (((◡dom 𝐹 ∪ {∅}) ∈ V ∧ ran 𝐹 ∈ V) → ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) | |
10 | 7, 8, 9 | syl2anc 565 | . 2 ⊢ (𝐹 ∈ 𝑉 → ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) |
11 | ssexg 4935 | . 2 ⊢ ((tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V) | |
12 | 1, 10, 11 | sylancr 567 | 1 ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 Vcvv 3349 ∪ cun 3719 ⊆ wss 3721 ∅c0 4061 {csn 4314 × cxp 5247 ◡ccnv 5248 dom cdm 5249 ran crn 5250 tpos ctpos 7502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-tpos 7503 |
This theorem is referenced by: tposex 7537 oftpos 20475 |
Copyright terms: Public domain | W3C validator |